Answer:
2KMnO4(aq) + 16HCl(aq) ------> 2MnCl2(aq) + 2KCl(aq) + 8H2O(l) + 5Cl2(g)
Explanation:
Chlorine is a diatomic halogen gas known for its greenish-yellow colour. It has a pungent smell and is only moderately soluble in water.
It is a very reactive gas and is never found in free state in nature.
Chlorine can be prepared in the laboratory by oxidation of hydrochloric acid using KMnO4 as follows;
2KMnO4(aq) + 16HCl(aq) ------> 2MnCl2(aq) + 2KCl(aq) + 8H2O(l) + 5Cl2(g)
The set up does not need to be heated.
As we know that
P.E. = mgh
where,
P.E. = Potential energy of the object =?
m= mass of object= 3kg
g= acceleration due to gravity = 9.8 ms^-2
h = height between object and animal = 0 m
Then
P.E. = 3× 9.8 × 0 = 0 Joules or 0J
<em>Have a luvely day!</em>
Answer:
xhhhvxhxgjhgogftsvicsdgfsytdhdrrygyfhd
Explanation:
ywwgzwu9wu9wsussg the the
Kr look on periodic table it's krypton elements
Answer:
Decreasing the temperature will shift the equilibrium leftwards towards reactants.
Explanation:
Hello!
In this case, since the reaction between chromate anions and hydrogen ions yields dichromate anions, water and heat, we can infer this is an exothermic reaction by which heat is released (remember in endothermic reactions heat is absorbed as a reactant), it means that considering the LeChatelier’s which states that increasing the temperature of an exothermic reaction shifts the equilibrium leftwards since heat is a product, otherwise (decreasing the temperature) the equilibrium will be shifted rightwards.
Therefore, decreasing the temperature is the perturbation that will shift the equilibrium leftwards towards the reactants.
Best regards!