Pulling a dogs leash: inertia
<h3><u>Answer;</u></h3>
Higher temperatures
A wave will go faster through a liquid at <em><u>highe</u></em><u>r </u>temperatures
<h3><u>Explanation;</u></h3>
- <em><u>Mechanical waves are types of waves that require a material medium for transmission.</u></em> An example of mechanical wave is the sound wave whose transmission occurs in medium such as solids, liquids and gases.
- <em><u>The transmission of mechanical waves involves vibration of particles through the medium of transmission, thus transfer of energy from one point to another. </u></em>The vibration of particle may be in the form of a longitudinal wave or a transverse wave.
- <em><u>Increasing the temperature in a medium increases the kinetic energy of the particles in the medium and thus increasing the speed at which the particles vibrates and thus aiding a faster transmission of a wave.</u></em>
The dimension of force, F is ML/T².
<h3>What is force?</h3>
Force is a push o push agent which causes a change in the state of rest or motion of an object.
From a fundamental law of motion states that the acceleration of an object is directly proportional to the resultant force exerted on the object and inversely proportional to its mass.
Mathematically; acceleration ∝ F/m
F = ma
dimension of Mass = M
dimension of acceleration = L/T²
dimension of force, F = ML/T²
In conclusion, the dimension of force is obtained from the dimensions of mass and acceleration.
Learn more about dimension of force at: brainly.com/question/28243574
#SPJ1
Static friction opposes the movement of car from the state of rest.
Dynamic or kinetic friction opposes the movement of the car when car is running at any speed.
1.2 x (2.2 x 10⁵) = 264,000 Ω
0.8 x (2.2 x 10⁵) = 176,000 Ω
With a 'nominal' value of 220,000 Ω, it could actually be anywhere <em>between 176,000Ω and 264,000Ω</em> .