Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s
B) droops.
Why?
To maintain balance, you do not need something short so you're balanced well... You need something long and droopy to maintain balance. The pole should be held by your waist and it should be light.
Hope this helps!~
Because they behave just like all the electromagnetic waves of the spectrum. Same equations, just shorter wavelengths and more energy.
Hope you get it :)
Answer: An electric circuit includes a device that gives energy to the charged particles constituting the current, such as a battery or a generator; devices that use current, such as lamps, electric motors, or computers; and the connecting wires or transmission lines.
Explanation: Hope this helped! <3
Answer
m/s rate of change of dispalcement per sec. ie velocity
m/s^2 is (m/s)/s ie rate of change of velocity per sec. ie accelerationplanation: