Answer: 22.5 percent of incoming solar radiation goes directly to the surface of the Earth and is absorbed.
Explanation: Transfer of radiation through a planet's atmosphere. A planet and its atmosphere, in our solar system, can radiate back to space only as much energy as it absorbs from incoming solar radiation.
I’m pretty sure it’s sulphur dioxide
Answer:
the entropy change for the surroundings when 1.62 moles of CH4(g) react at standard conditions is −8.343 J/K
Explanation:
The balanced chemical equation of the reaction in the question given is:

Using standard thermodynamic data at 298K.
The entropy of each compound above are listed as follows in a respective order.
Entropy of (CH4(g)) = 186.264 J/mol.K
Entropy of (O2(g)) = 205.138 J/mol.K
Entropy of (CO2(g)) = 213.74 J/mol.K
Entropy of (H2O(g)) = 188.825 J/mol.K
The change in Entropy (S) of the reaction is therefore calculated as follows:


= -5.15 J/mol.K
Given that :
the number of moles = 1.62 of CH4(g) react at standard conditions.
Then;
The change in entropy of the rxn 
= −8.343 J/K
Answer:
Explanation:
mass = 400 grams * [1 kg/1000 grams] = 0.400 kg
c = 387 Joules / (oC * kg)
Δt = 55 - 30 = 25 oC
E = m*c * Δt
E = 0.4 * 387 * 25
E = 3870 Joules
Boiling point is the temperature at which vapour pressure equals atmospheric pressure.
As, we move at higher altitudes, atmospheric pressure decreases. Hence, temperature to reach the boiling point will decrease.
Further, boiling point is higher for longer chain compounds. Hence,<span> octane (C8H18) and octanol (C8H17OH) will have higher boiling point as compared to hexane (C6H14). Further, intermolecular forces of interaction are more stronger in octanol, due to presence of OH group, as compared to octane.
Hence, boiling points will be in following order:
Octanol > Octane > Hexane
Thus, hexane will boil first, followed by octane and lastly octanol.</span>