The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
It is true that the light is 15.000 more dangerous than the radiation of a microwave.
<h3>What is the wavelength?</h3>
The wavelength shows the extent or how far the wave travels. Now we know that the energy of the wave can be use to find out how much dangerous the wave is.
Now;
1.6 * 10^-19 J = 1eV
x J = 1.8 eV
x = 1.8 eV * 1.6 * 10^-19 J /1eV
x = 2.88 * 10^-19 J
Now if the energy of the microwaves is 1.2 x 10^-4 J, then it follows that;
2.88 * 10^-19 J/ 1.2 x 10^-4 J,
= 2.4 * 10^15
Hence, it is true that the light is 15.000 more dangerous than the radiation of a microwave.
Learn more about microwave:brainly.com/question/15708046
#SPJ1
Answer:
an atom is about a trillion times smaller then a speck of dust.
Explanation:
hope this helps :)
The variables which are involved in understanding Kepler's third law of
motion are
<h3 /><h3>What is Kepler's third law of motion?</h3>
Kepler's third law of motion states that the the square of the orbital period of
a planet is proportional to the cube of the semi-major axis of its orbit. He
also inferred that the greater the distance, the slower the orbital velocity.
This thereby makes option D the most appropriate option as it contains the
orbital velocity and distance to sun variables.
Read more about Kepler's third law of motion here brainly.com/question/777046
Use Newton's second law and the free body diagram to determine the net force and acceleration of an object. In this unit, the forces acting on the object were always directed in one dimension.
The object may have been subjected to both horizontal and vertical forces but there was no single force directed both horizontally and vertically. Moreover, when free-body diagram analysis was performed, the net force was either horizontal or vertical, never both horizontal and vertical.
Times have changed and we are ready for situations involving two-dimensional forces. In this unit, we explore the effects of forces acting at an angle to the horizontal. This makes the force act in two dimensions, horizontal and vertical. In such situations, as always in situations involving one-dimensional network forces, Newton's second law applies.
Learn more about Newton's second law here:-brainly.com/question/25545050
#SPJ9