Answer:
3.71 eV
Explanation:
λ = Wavelength of light = 224 nm = 224 x 10⁻⁹ m
c = speed of electromagnetic wave = 3 x 10⁸ m/s
V₀ = stopping potential = 1.84 volts
W₀ = Work function of the metal = ?
Using the equation


= 5.94 x 10⁻¹⁹
= 3.71 eV
Answer:
A. MA=force output/force input
Explanation:
mechanical advantage is the ratio of the load to the effort
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Answer:
The correct option is D
Explanation:
In trying to achieve what the student wanted to see, which is to see the relationship between the weight the cord can hold and how long the cord will stretch. Since the origin of the graph is from zero, the value plotted on the vertical axis would be just the length caused by each weights. Thus, <u>the original length would have to be subtracted from the measured length to determine the actual length caused by the weight added to the cord</u>.