True. Classifying by similarities is the basis for biological classification.
Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:


Actual distance between the start and the end point (displacement):

Now, to calculate how much farter did the traveler walk, we need to use the following equation:

Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!
If you are asking for a proof on having at least 3 dimensions in space, you can find the physical proof anywhere in your daily life activities. Just the fact that solids have volumes is a proof already that we live in a three-dimensional space. We can move forwards, backwards, sidewards and in all other directions possible.
When you go right into detail, the fundamental laws governing these proofs are very technical. They have differential equations to show as proof. It is too detailed to discuss here. The important things is that, these fundamental laws are what explains the science in our basic activities and natural phenomena:
*Gravitation and planetary motion
* Translation, rotation, magnetic field, forces
* Integrals of equations:
The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1