Answer:

Explanation:
Let us consider the reaction:
2 NO₂ + 1/2 O₂ ⇄ N₂O₅
The rate of formation of a substance is equal to the change in concentration of the product divided the change in time:
![r(N_{2}O_{5})=\frac{\Delta [N_{2}O_{5}] }{\Delta t}](https://tex.z-dn.net/?f=r%28N_%7B2%7DO_%7B5%7D%29%3D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7DO_%7B5%7D%5D%20%7D%7B%5CDelta%20t%7D)
The rate of disappearance of a reactant is equal to to the change in concentration of the reactant divided the change in time, with a negative sign so that the rate is always a positive variable.
![r(NO_{2})=-\frac{\Delta[NO_{2}] }{\Delta t}](https://tex.z-dn.net/?f=r%28NO_%7B2%7D%29%3D-%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%20%7D%7B%5CDelta%20t%7D)
![r(O_{2})=-\frac{\Delta[O_{2}] }{\Delta t}](https://tex.z-dn.net/?f=r%28O_%7B2%7D%29%3D-%5Cfrac%7B%5CDelta%5BO_%7B2%7D%5D%20%7D%7B%5CDelta%20t%7D)
The rate of the reaction is equal to the rate of any substance divided its stoichiometric coefficient. In this way, we can relate these expressions:

Hydrogen bonds are intermolecular (“between-molecule”) bonds, rather than intramolecular (“within-molecule”) bonds. They occur not only in water but in other polar molecules in which positive hydrogen atoms are attracted to negative atoms in nearby molecules. Hydrogen bonds are <em>relatively weaker</em> as chemical bonds. For example, they are much weaker than the bonds holding atoms together within molecules of covalent compounds.
Hydrogen bond is<em> weaker </em>than ionic and covalent bonds. Example: Water molecules are held to each other by intermolecular forces of attraction. Covalent bonds are the strongest bonds, meaning that atoms are actually held together by the physical sharing of electrons.
Answer:(a) hydrogen and oxygen
Answer:
ummmm I don't know of sorry
<em><u>Ionic bonds</u></em> <span>are the type of bonds where there is </span><u>transfer</u><span><u> </u>of electrons from one atom to another. The electrons are removed and from one atom and attached to another. A good example is salt which is composed of sodium and chlorine. Sodium readily loses one of its electrons and chlorine readily accepts it. Before losing the electron, sodium has a positive charge, but then becomes negatively charged after giving up the electron. Chlorine has a positive charge before gaining the electron but becomes negatively charged after gaining the electron. These opposite charges between sodium and chlorine attract the two elements together to form the ionic bond.</span>