PH of acidic buffer = pKa + log [CH₃COONa - HCl] / [CH₃COOH + HCl]
pKa of CH₃COOH = 4.74
Concentration of acetic acid in buffer = 2.0 M
Concentration of sodium acetate = 1.0 M
Concentration of HCl must add = x
pH = 4.74 + log (1-x) / (2+x) = 4.11
x = concentration of HCl must be added = 0.43 M
number of moles of HCl = M * V = 0.43 * 1 = 0.43 mol
mass of HCl must be added = 0.43 * 36.5 = 15.7 g
I am pretty sure that electron amounts and proton amounts are the same.
Answer:

Explanation:
To convert form grams to moles, the molar mass must be used. This is the mass (in grams) in 1 mole of a substance.
We can use the values on the Periodic Table. First, find the molar masses of the individual elements: carbon and oxygen.
- C: 12.011 g/mol
- O: 15.999 g/mol
Check for subscripts. The subscript of 2 after O means there are 2 oxygen atoms, so we have to multiply oxygen's molar mass by 2 before adding.
- O₂: 2* (15.999 g/mol)=31.998 g/mol
- CO₂: 12.011 g/mol + 31.998 g/mol =40.009 g/mol
Use the molar mass as a ratio.

Multiply by the given number of grams.

Flip the fraction so the grams of carbon dioxide cancel.



The original measurement of grams has 2 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
The ten thousandth place has a 5, so we round the 4 to a 5.

2.4 grams of carbon dioxide is about 0.055 moles.
The question is already answered.
Answer:
no entiendo del todo el inglés