
As per as my knowledge
The speed of a wave in a medium is affected by <u>d</u><u>e</u><u>n</u><u>s</u><u>i</u><u>t</u><u>y</u>,<u> </u><u>w</u><u>a</u><u>v</u><u>e</u><u>l</u><u>e</u><u>n</u><u>g</u><u>t</u><u>h</u> and <u>t</u><u>e</u><u>m</u><u>p</u><u>e</u><u>r</u><u>a</u><u>t</u><u>u</u><u>r</u><u>e</u><u> </u>:)
(Good luck on your test and mark me brainliest if this helps)
The correct answer is D) The closet point in the Moon's orbit to Earth
This does not refer to the Moon only. It refers to any satellite and to its closest point to Earth.
Answer:
if you're converting then the answer is 0.00895
Explanation:
895 centimetres converted into kilometres= 0.00895
Answer:
Do u have a picture of the graph?
Explanation:
I can solve it with refraction
Explanation:
There are three forces on the bicycle:
Reaction force Rp pushing up at P,
Reaction force Rq pushing up at Q,
Weight force mg pulling down at O.
There are four equations you can write: sum of the forces in the y direction, sum of the moments at P, sum of the moments at Q, and sum of the moments at O.
Sum of the forces in the y direction:
Rp + Rq − (15)(9.8) = 0
Rp + Rq − 147 = 0
Sum of the moments at P:
(15)(9.8)(0.30) − Rq(1) = 0
44.1 − Rq = 0
Sum of the moments at Q:
Rp(1) − (15)(9.8)(0.70) = 0
Rp − 102.9 = 0
Sum of the moments at O:
Rp(0.30) − Rq(0.70) = 0
0.3 Rp − 0.7 Rq = 0
Any combination of these equations will work.