Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.
Answer:
dddddddddddddddddddddddddd
Explanation:
Answer:
The velocity of the other fragment immediately following the explosion is v .
Explanation:
Given :
Mass of original shell , m .
Velocity of shell , + v .
Now , the particle explodes into two half parts , i.e
.
Since , no eternal force is applied in the particle .
Therefore , its momentum will be conserved .
So , Final momentum = Initial momentum

The velocity of the other fragment immediately following the explosion is v .
The free electrons in metals can move through the metal, all while receiving and losing electrons, allowing metals to conduct electricity. Example: copper is a great conductor of electric current.
Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N