7.86 is the pOH of water at this temperature of 100 degrees celsius.
Option E is the right answer.
Explanation:
Data given:
Kw = 51.3 x 
pOH = ?
we know that pure water is neutral and will have pH pf 7.
The equation for relation between Kw and H+ and OH- ion is given by:
Kw = [H+] [OH-}
here the concentration of H+ ion and OH- ion is equal
so, [H+]= [OH-]
Putting the values in the equation of Kw
pKw = -log[Kw]
pKw = -log [51.3 x
]
pKw = 12.28
since H+ ion OH ion concentration is equal the pH of water is half i.e. 6.14
Now, pOH is calculated by using the equation:
14 = pOH + pH
14- 6.14 = pOH
pOH = 7.86
Ion-dipole forces
H2O has hydrogen bonding, which is a form of dipole-dipole forces, and NO3- is an ion, so the intermolecular attraction is ion-dipole.
Acceleration is the rate of change and is constantly positive
The answers for Acceleration:
m/s^2
Change in velocity over change in time
Velocity is the speed of the object but also involves direction can be both negative and positive
The answers for Velocity:
m/s
Can be positive or negative
Change in displacement over change in time
Both Acceleration and Velocity:
A rate of change
Answer:
By the result of the formation of positive and negative ions, Ionic compounds are formed.
Explanation:
Electrons are actually transferred from one atom to another to form rare gas electron structures for each ion. The atom which forms a positive ion loses electrons to the atom which gains electrons to form a negative ion. A compound is not stable unless the number of electrons which are lost and gained are equal
= k
<u>Explanation:</u>
The relation between volume, V of gas and Temperature, T of a gas is related by Charles Law.
This law states that the volume of a given amount of gas held at a constant pressure is directly proportional to the Kelvin temperature
Thus,
= k
where k is a constant
Therefore,
=
=
...
This shows, as the volume of a gas goes up, the temperature also goes up and vice-versa.