By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.
The answer is C. 146g because you add all of the masses of the individual elements and then mulyiply by 1.72 to get your answer.
Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.
The trough and the hill part