Answer:
Output voltage equation is 
Explanation:
Given:
dc gain
dB
Input signal 
Now convert gain,

DC gain at frequency
is given by,



At zero frequency above equation is written as,


Now we write output voltage as input voltage,

Therefore, output voltage equation is 
Answer:
Hook's law holds good up to. A elastic limit. B. plastic limit. C.yield point. D.Breaking point
Answer:
- def median(l):
- if(len(l) == 0):
- return 0
- else:
- l.sort()
- if(len(l)%2 == 0):
- index = int(len(l)/2)
- mid = (l[index-1] + l[index]) / 2
- else:
- mid = l[len(l)//2]
- return mid
-
- def mode(l):
- if(len(l)==0):
- return 0
-
- mode = max(set(l), key=l.count)
- return mode
-
- def mean(l):
- if(len(l)==0):
- return 0
- sum = 0
- for x in l:
- sum += x
- mean = sum / len(l)
- return mean
-
- lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
- print(mean(lst))
- print(median(lst))
- print(mode(lst))
Explanation:
Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).
In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.
In mean function, after checking the length of list, we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).
In the main program, we test the three functions using a sample list and we shall get
20.5
12.5
12
Answer:
They moved fresh water around their vast empire with aqueducts and canals.
Explanation:
Answer:
Option B (Starter Control Circuit) is the right option.
Explanation:
- This same switching is normally put upon this isolated side of something like the transmission Arduino microcontroller throughout the configuration that is using the ignition just to command the broadcast.
- It uses a secondary relay isolated to regulate electrical current throughout the solenoid starting system.
All other given options are not related to the given instance. So the above option is correct.