Spiral galaxies have three main components: a bulge, disk, and halo (see right). The bulge is a spherical structure found in the center of the galaxy. This feature mostly contains older stars. The disk is made up of dust, gas, and younger stars. The disk forms arm structures. Our Sun is located in an arm of our galaxy, the Milky Way. The halo of a galaxy is a loose, spherical structure located around the bulge and some of the disk. The halo contains old clusters of stars, known as globular clusters<span>.
</span><span>
Elliptical galaxies are shaped like a spheriod, or elongated sphere. In the sky, where we can only see two of their three dimensions, these galaxies look like elliptical, or oval, shaped disks. The light is smooth, with the surface brightness decreasing as you go farther out from the center. Elliptical galaxies are given a classification that corresponds to their elongation from a perfect circle, otherwise known as their ellipticity. The larger the number, the more elliptical the galaxy is. So, for example a galaxy of classification of E0 appears to be perfectly circular, while a classification of E7 is very flattened. The elliptical scale varies from E0 to E7. Elliptical galaxies have no particular axis of rotation.
</span>
We are given with a compound, Zinc (Zn) having a 1.7 x 10
^23 atoms. We are tasked to solve for it's corresponding mass in g. We need to
find first the molecular weight of Zinc, that is
Zn= 65.38 g/mol
Not that 1 mol=6.022x10^{23} atoms, hence,
1.7 x 10 ^23 atoms x 1 mol/6.022x10^{23} atoms x65.38
g/ 1mol
=18.456 g of Zn
Therefore, the mass of Zinc 18.456 g
Answer:
- <u><em>It is positive when the bonds of the product store more energy than those of the reactants.</em></u>
Explanation:
The <em>standard enthalpy of formation</em>, <em>ΔHf</em>, is defined as the energy required to form 1 mole of a substance from its contituent elements under standard conditions of pressure and temperature.
Then, per defintion, when the elements are already at their standard states, there is not energy involved to form them from that very state; this is, the standard enthalpy of formation of the elements in their standard states is zero.
It is not zero for the compounds in its standard state, because energy should be released or absorbed to form the compounds from their consituent elements. Thus, the first choice is false.
When the bonds of the products store more energy than the those of the reactants, the difference is:
- ΔHf = ΔHf products - ΔHf reactants > 0, meaning that ΔHf is positive. Hence, the second statement is true.
Third is false because forming the compounds may require to use (absorb) or release (produce) energy, which means that ΔHf could be positive or negative.
Fourth statement is false, because the standard state of many elements is not liquid. For example, it is required to supply energy to iron to make it liquid. Thus, the enthalpy of formation of iron in liquid state is not zero.
Answer:
a) a0 was 46.2 grams
b) It will take 259 years
c) The fossil is 1845 years old
Explanation:
<em>An unknown radioactive substance has a half-life of 3.20hours . If 46.2g of the substance is currently present, what mass A0 was present 8.00 hours ago?</em>
A = A0 * (1/2)^(t/h)
⇒ with A = the final amount = 46.2 grams
⇒ A0 = the original amount
⇒ t = time = 8 hours
⇒ h = half-life time = 3.2 hours
46.2 = Ao*(1/2)^(8/3.2)
Ao = 261.35 grams
<em>Americium-241 is used in some smoke detectors. It is an alpha emitter with a half-life of 432 years. How long will it take in years for 34.0% of an Am-241 sample to decay?</em>
t = (ln(0.66))-0.693) * 432 = 259 years
It will take 259 years
<em>A fossil was analyzed and determined to have a carbon-14 level that is 80% that of living organisms. The half-life of C-14 is 5730 years. How old is the fossil?</em>
<em />
t = (ln(0.80))-0.693) * 5730 = 1845
The fossil is 1845 years old