Answer:
S = 21.92 %
F = 78.08 %
Explanation:
To find the percent composition of each element in SF6, we must find the molar mass of SF6 first.
Molar mass of SF6 = 32 + 19(6)
= 32 + 114
= 146g/mol
mass of Sulphur (S) in SF6 = 32g
mass of Fluorine (F) in SF6 = 114g
Percent composition = mass of element/molar mass of compound × 100
- % composition of S = 32/146 × 100 = 21.92%.
- % composition of F = 114/146 × 100 = 78.08%.
Explanation:
how are you confused there just tell me the problem
Answer: The temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Explanation:
According to ideal gas equation:

P = pressure of gas = 2300 mm Hg = 3.02 atm (760mmHg=1atm)
V = Volume of gas = 15 L
n = number of moles = 0.6
R = gas constant =
T =temperature = ?


Thus the temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
PH + pOH = 14
pH = 14 - pOH
pH = 14 - 8.7
pH = 5,3
This solution is <u>acidic</u>.
If pH<7 - acidic
If pH=7 - neutral
If pH>7 - basic
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.