Answer:
volume of the container will decreases if pressure increases.
Explanation:
According to Boyle's law:
Pressure is inversely proportional to volume which means if pressure of a gas increases the volume of the gas will decreases as gas molecules will collide and come closer forcefully so volume will decreases. And its formula for determining volume and pressure is:
<em>PV=nRT</em>
where "R" is a ideal gas constant
"T" is temperature and
"n" is number of particles given in moles while "V" is volume and "P" is pressure.
Answer:A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance.
Explanation:
And yes I would love to talk
Answer:
c. Mercury is used in barometers because it has a high density
Explanation:
Chemical change -
It refers to any change in a chemical process , where there is formation of any new substance , is referred to as a chemical change .
The indication of any chemical change is the formation of some new substance.
Hence, from the question,
The process which does not involve chemical change is -
The use of mercury in barometer , to measure pressure , in this process no new substance is formed i.e. , now change in mercury.
Answer:
The correct answer is 0.033 M
Explanation:
We have a solution of NaClO with a concentration of 5%w/w:
5% w/w= 5 g NaClO/100 g solution
The first dilution is 10 ml of solution in 100 ml. That is a 1/10 dilution (10ml/100 ml= 1/10). That means we are diluting 10 times the solution. We can calculate the resulting concentration after this first dilution as follows:
5%w/w x 10 ml/100 ml = 5% w/w/10= 0.5%w/w
Then, we take 6 ml of 0.5% w/w solution and we add 6 ml of dye in a reaction vessel. The total volume of the solution in the reaction vessel is 6 ml + 6 ml= 12 ml, and we are diluting twice the solution because 6 ml/12 ml= 1/2. We can calculate the resulting concentration of the solution after this second dilution as follows:
0.5% w/w x 6 ml/12 ml= 0.5% w/w/2= 0.25%w/w
Finally, we need to convert the concentration from %w/w to M (mol solution/1L solution). For this, we assume a density of the solution close to the density of water (1.00 g/ml) and we use the molecular weight of NaClO (74.44 g/mol):
0.25 g NaClO/100 g solution x 1 mol NaClO/74.44 g x 1.00 g solution/1 ml x 100 ml/0.1 L= 0.033 mol/L
= 0.033 M