It uses elimination againLet A be 15% juice and B is 5% juice
A+B = 100.15A + 0.05B = 0.11*10 = 1.1Multiply 2nd equation by 100 to get rid of decimals
A+B = 1015A + 5B = 110
Nitrogen is crucial to the marine life and it is disappearing because it cannot be assimilated by most organisms in the water.
The correct Answer is A.
The Flow chart of the Carbon Cycle, will look as follows:
1. Carbon dioxide in the atmosphere.
2. Producers undergo photosynthesis (in this process plants among other producers like algae, use CO2 to produce energy).
3. Consumers eat producers (a primary level of consumer like a rabbit eats the producers or plants).
4. Decomposers return Carbon to the soil and release waste.
And the cycle continues again, by going back to step 1.
Answer:
1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.
2) The pH of the solution after adding HCl is 12.6
Explanation:
10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.


There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.
NaOH + HCl ⇒ NaCl + H₂O
Initial 2.5 × 10⁻³ 1.5 × 10⁻³ 0 0
Reaction -1.5 × 10⁻³ -1.5 × 10⁻³ 1.5 × 10⁻³ 1.5 × 10⁻³
Final 1.0 × 10⁻³ 0 1.5 × 10⁻³ 1.5 × 10⁻³
The concentration of NaOH is:
![[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M](https://tex.z-dn.net/?f=%5BNaOH%5D%3D%5Cfrac%7B1.0%20%5Ctimes%2010%5E%7B-3%7D%20mol%20%7D%7B25.0%20%5Ctimes%2010%5E%7B-3%7D%20L%7D%20%3D0.040M)
NaOH is a strong base so [OH⁻] = [NaOH].
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log 0.040 = 1.4
pH = 14 - pOH = 14 - 1.4 = 12.6