Answer:
Increasing the tension on a string increases the speed of a wave, which increases the frequency (for a given length). Pressing the finger at different places changes the length of string, which changes the wavelength of standing wave, affecting the frequency.
Explanation:
Answer:
Explanation:
Given that,
Number of turn N = 40
Diameter of the coil d= 11cm = 0.11m
Then, radius = d/2 = 0.11/2 =0.055m
r = 0.055m
Then, the area is given as
A =πr²
A = π × 0.055²
A = 9.503 × 10^-3 m²
Magnetic Field B = 0.35T
Magnetic field reduce to zero in 0.1s, t = 0.1s
so we want to find induce electric field. To find the electric field,(E) we need to find the electric potential (V).
E.M.F is given as
ε = —N • dΦ/dt
Where magnetic flux is given as
Φ = BA
Then, ε = —N • dΦ/dt
ε = —N • dBA/dt
ε = —NBA/t
Then, its magnitude is
ε = NBA/t
Inserting the values of N, B, A and t
ε = 40×0.35×9.503×10^-3/0.1
ε = 1.33 V
Then, using the relationship between Electric field and electric potential
V = Ed
ε = E•d
E = ε/d
E = 1.33/0.11
E = 12.09 V/m
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.
Answer:
15.5 m/s.
Explanation:
Potential energy of the balloon has been converted to kinetic energy.
potential energy = kinetic energy.
mgh = ½mv².
10* 10* 12= ½ *10 *v²
1200 = 5v²
v²=1200÷5
v=√240
v= 15.49~15.5 m/s.
Answer:
the height of the potential energy is 3,200 J
Explanation:
The computation of the kinetic energy is shown below:
Kinetic energy = 1 ÷ 2 × mass × velocity^2
= 1 ÷ 2 × 4 kg × 40 m/s^2
= 3,200 J
Hence the height of the potential energy is 3,200 J