force is mass multiply by acceleration so it will be 150 multiply by 10 is 1500N
Let <em>A</em> be the amount of money that Aliya deposited in the savings account. Since <em>A</em> is half as much as money as she invested in a money market account, then the amount that she invested in the market account is <em>2A.</em>
<em />
Express the interest that Aliya earned in terms of A. Set it equal to the amount of $297.60 and then solve for <em>A</em>.
Since the savings account gives 1.9% simple interest, the total amount of interest that she will earn from the savings account is 1.9% of A, which is equal to:

Since the money market account gives 3.7% simple interest, the total amount of interest that she will earn from the money market account, is 3.7% of <em>2A</em>, which is equal to:

Add both interests in terms of A and simplify the expression:

The expression (9.3/100)*A represents the total interest after one year. Then:

Use the value of <em>A</em> to find the amount that was invested in the money market account:

Therefore, Aliya deposited 3200 in a savings account and 6400 in a money market account.
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back