Answer:
4.9 × 10²³ molecules
Explanation:
Given data:
Number of molecules = ?
Number of moles of oxygen = 0.815 mol
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
0.815 mol × 6.022 × 10²³ molecules / 1 mol
4.9 × 10²³ molecules
Answer: The main sections of an airplane include:
fuselage: The plane’s body, or fuselage, holds the aircraft together, with pilots sitting at the front of the fuselage, passengers and cargo in the back.
Wings: An aircraft’s wings are critical to flight through the production of lift, but they have many parts of the wing to control this lift amount and direction.
Cockpit: The cockpit is the area at the front of the fuselage from which a pilot operates the plane
Engine: The engine(s), or powerplant, of an aircraft creates thrust needed for the plane to fly.
Propeller: An aircraft’s propeller(s) are airfoils, similar to a wing, installed vertically to create thrust to drive the plane forward.
Tail assembly: An aircraft’s tail is mainly used for stability, as well as creating lift in combination with the wings. It’s comprised of several parts.
Landing gear: Landing gear is located under the belly of the plane consisting of a wheel and strut to soften impact with the ground and may be retractable into the fuselage.
Explanation:
The heat released/absorbed by a reaction that occurs at constant pressure.
Hope this helped :)
Answer:Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around.
Explanation:
Answer:
- 75.5 g O₂ (g) can be produced from 42.6 g of H₂O (g)
Explanation:
<u>1) Balanced chemical equation (given):</u>
<u>2) Mole ratios:</u>
- 2 moles H₂O(g) : 2 moles H₂(g) : 2 moles O₂(g)
<u>3) Calculate the number of moles of reactant (H₂0):</u>
- number of moles = mass in grams / molar mass
- molar mass of water: 18.015 g/mol
- mass in grams of water: 42.6 g
- number of moles = 42.6 g / 18.05 g/mol = 2.36 moles H₂O
<u>4) Set a proportion using the mole ratio O₂ to H₂O and the actual number of moles of H₂O:</u>
- 2 moles O₂ / 2 moles H₂O = x / 2.36 moles H₂O
<u>5) Convert 2.36 moles O₂ to grams:</u>
- mass in grams = number of moles × molar mass
- mass = 2.36 moles × 32.00 g/mol = 75.5 g O₂