Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.
Answer:
483 nm corresponds to blue light hence the complex will appear orange.
Explanation:
Using the formula;
E= hc/λ
Where;
E = energy of the photon
h = Plank's constant (6.6*10^-34Js)
c = Speed of light (3*10^8 ms-1)
λ = wavelength
λ = hc/E
λ = 6.6*10^-34 * 3*10^8/4.10×10^−19
λ = 4.83 * 10^-7 or 483 nm
483 nm corresponds to blue light
Using the colour wheel approach, if a complex absorbs blue light, then it will appear orange.
The fittest species for a certain biome will adapt and change so as to keep living. This process is evolution and an example can be giraffes. If they had smaller necks, they couldn't reach the tree tops where food is, so only the fittest one with large necks survived, and they evolved by having the entire species grow up with large necks.
Answer:
0.052mL
Explanation:
1mole of a gas occupy 22.4L.
Therefore, 1 mole of CO2 will also occupy 22.4L.
If 1mole of CO2 occupies 22.4L,
Then 2.3moles of CO2 will occupy = 2.3 x 22.4 = 51.52L
coverting this volume to mL, we simply divide by 1000 as shown below:
51.52/1000 = 0.05152mL = 0.052mL
Sulfur forms compounds in oxidation states −2 (sulfide, S2−), +4 (sulfite, SO32−), and +6 (sulfate, SO42−). I don't know what type of ion but hope this helps!! :)