1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
13

What type of wave is created when banging a drum

Physics
2 answers:
MrMuchimi3 years ago
8 0
<span>The sound that comes out of a drum is affected by its shape. If the drum is large, the sound will have a lower pitch.  The slower vibration causes a lower pitch. </span>
MA_775_DIABLO [31]3 years ago
5 0
It depends on what drum and pitch you play
You might be interested in
What are two ways air resistance can be increased?
elena-14-01-66 [18.8K]
The increase in speed leads to an increase in the amount of air resistance. Eventually, the force of air resistance becomes large enough to balances the force of gravity. At this instant in time, the net force is 0 Newton; the object will stop accelerating. The object is said to have reached a terminal velocity.
7 0
3 years ago
Physics help please
zhuklara [117]

Answer: 37.981 m/s

Explanation:

This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:

<u>x-component: </u>

x=V_{o}cos\theta t   (1)

Where:

x=52 m is the point where the ball strikes ground horizontally

V_{o} is the ball's initial speed

\theta=0 because we are told the ball is thrown horizontally

t is the time since the ball is thrown until it hits the ground

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta t+\frac{gt^{2}}{2}   (2)

Where:

y_{o}=120m  is the initial height of the ball

y=0  is the final height of the ball (when it finally hits the ground)

g=-9.8m/s^{2}  is the acceleration due gravity

Knowing this, let's start by finding t from (2):

<u></u>

0=y_{o}+V_{o}sin(0\°) t+\frac{gt^{2}}{2}   (3)

0=y_{o}+\frac{gt^{2}}{2}  

t=\sqrt{\frac{-2 y_{o}}{g}}   (4)

t=\sqrt{\frac{-2 (120 m)}{-9.8m/s^{2}}}   (5)

t=4.948 s   (6)

Then, we have to substitute (6) in (1):

x=V_{o}cos(0\°) t   (7)

And find V_{o}:

V_{o}=\frac{x}{t}   (8)

V_{o}=\frac{52 m}{4.948 s}   (9)

V_{o}=10.509 m/s   (10)

On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity V:

V=V_{o} + gt (11)

V=10.509 m/s + (-9.8 m/s^{2})(4.948 s) (12)

V=-37.981 m/s (13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.

However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).

5 0
2 years ago
Two runners start at the same point on a straight track. The first runs with constant acceleration so that he covers 98 yards in
charle [14.2K]

Answer:

94.13 ft/s

Explanation:

<u>Given:</u>

  • t = time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
  • s = distance to be moved by the rock long the horizontal = 98 yards
  • y = displacement to be moved by the rock during the time of flight along the vertical = 0 yard

<u>Assume:</u>

  • u = magnitude of initial velocity of the rock
  • \theta = angle of the initial velocity with the horizontal.

For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

\therefore y = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow 0 = u\sin \theta 5 +\dfrac{1}{2}(-9.8)\times 5^2\\\Rightarrow u\sin \theta 5 =\dfrac{1}{2}(9.8)\times 5^2......(1)\\

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

\therefore u\cos \theta t = s\\\Rightarrow u\cos \theta 5 = 98.....(2)\\

On dividing equation (1) by (2), we have

\tan \theta = \dfrac{25}{20}\\\Rightarrow \tan \theta = 1.25\\\Rightarrow \theta = \tan^{-1}1.25\\\Rightarrow \theta = 51.34^\circ

Now, putting this value in equation (2), we have

u\cos 51.34^\circ\times  5 = 98\\\Rightarrow u = \dfrac{98}{5\cos 51.34^\circ}\\\Rightarrow u =31.38\ yard/s\\\Rightarrow u =31.38\times 3\ ft/s\\\Rightarrow u =94.13\ ft/s

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.

3 0
3 years ago
Someone please help. science &lt;3 thx<br> ill give 15 pts for it.
STALIN [3.7K]

Answer:

put these numbers in the boxes from up to down. hope this helps! :)

Explanation:

7

6

3

1

8

4

2

5

5 0
2 years ago
What kind of surface is suitable for infared radiation
nlexa [21]

Answer:

Different surfaces

<h3>You can see that dull surfaces are good absorbers and emitters of infrared radiation. Shiny surfaces are poor absorbers and emitters (but they are good reflectors of infrared radiation</h3>
8 0
3 years ago
Other questions:
  • You have a lens whose focal length is 6.91 cm. You place an object on the axis of the lens at a distance of 11.1 cm from it. How
    10·1 answer
  • romeo threw a small bundle toward Juliet on a balcony 10.0 m above him with a velocity of 5.0 m/s. The bundle stopped rising aft
    12·1 answer
  • If it takes 150 n of force to accelerate an object at 30 m/s what is the mass of the object
    15·1 answer
  • Suppose you were far from a planet that had a very strong gravitational field, and an emission line spectrum source on the surfa
    12·1 answer
  • If a truck is travelling east on a straight road and travels 100 meters in 25s what is the truck's velocity?
    8·1 answer
  • Mrs. Walker has on new shoes! When she walks down the waxed hall floors she slips and slides. What could Mrs. Walker do to help
    10·1 answer
  • What part of that antonym determines if it will combine or break apart from another substance
    6·1 answer
  • Astronauts need sophisticated spacesuits to protect them from the harsh conditions of space. These spacesuits are very heavy for
    11·1 answer
  • Compare the momentum of a 7160 kg truck moving at 5.00 m/s to the
    8·1 answer
  • Let us be two cylindrical conductors connected in parallel, to which a potential difference of V = 170V is applied. The two cond
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!