Eutrophication
In an aged aquatic habitat like a lake, eutrophication is the progressive rise in the concentration of phosphorus, nitrogen, and other plant nutrients. As the volume of organic matter that can be converted into nutrients increases, the productivity or fertility of such an ecosystem also naturally rises.
<h3>What is Eutrophication ?</h3>
Eutrophication may be caused by a number of things, including overuse of fertilisers, untreated sewage, the use of phosphorous-containing detergents, and industrial waste discharge.
- Eutrophication naturally. Natural eutrophication is a process that develops in water resources over a very long period of time as a result of a slow buildup of nutrients and organic waste. Anthropogenic or cultural eutrophication.
Learn more about Eutrophication here:
brainly.com/question/26956972
#SPJ4
Answer:
<h2>464.85 mL</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we're finding the new volume

100.7 kPa = 100,700 Pa
95.1 kPa = 95,100 Pa
We have

We have the final answer as
<h3>464.85 mL</h3>
Hope this helps you
Answer:
No you can't
Explanation:
The atomic number is the amount of protons in element's nucleus, that's one reason why. The second reason is that the atomic mass is protons and neutrons combined, their estimated value, which doesn't show how much neutrons are in an element. It does show combined, but not specifically neutrons
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
Answer: Option (A) is the correct answer.
Explanation:
When energy is transferred from the air to the water then energy is absorbed by the water molecules.
This energy travels through one molecule of water to another molecule of water by the process of convection.
Thus, we can conclude that when energy is transferred from the air to the water, then it travels through the water.