Energy slowly leaks outward through the radiative diffusion of photons that repeatedly bounce off ions and electrons.
<h3>What is radiative diffusion?</h3>
A radiation zone is a layer of a star's core where energy is mostly carried toward the outside by radiative diffusion and thermal conduction rather than convection.
As photons, energy passes through the radiation zone as electromagnetic radiation.
The radiative diffusion of photons that repeatedly bounce off ions and electrons progressively drains energy outward.
Hence,radiative diffusion is correct answer.
To learn more about radiative diffusion refer:
brainly.com/question/3598352
#SPJ4
Answer:
the answer might the number 2
Explanation:
Answer:
r = 0.0548 m
Explanation:
Given that,
Singly charged uranium-238 ions are accelerated through a potential difference of 2.20 kV and enter a uniform magnetic field of 1.90 T directed perpendicular to their velocities.
We need to find the radius of their circular path. The formula for the radius of path is given by :

m is mass of Singly charged uranium-238 ion, 
q is charge
So,

So, the radius of their circular path is equal to 0.0548 m.
Answer:
20 N
Explanation:
In air, the normal force is equal to the weight.
∑F = ma
N − mg = 0
N = mg
Submerged in water, the normal force is equal to the weight minus the buoyant force:
∑F = ma
B + N − mg = 0
N = mg − B
Plugging in values:
80 N = 100 N − B
B = 20 N
Answer:
<em>60008.4 J</em>
<em></em>
Explanation:
The mass of each kid = 30 kg
mass of the cart = 20 kg
The speed of the cart down the hill = 30 km/hr = 30 x 1000/3600 = 8.33 m/s
The height of the hill = 80 m
The potential energy of the boys at the top of the hill = mgh
where
m is the total mass of the kids and the cart = (30 x 2) + 20 = 80 kg
g is the acceleration due to gravity = 9.81 m/s^2
h is their height above the ground = 80 m (on the top of the hill)
substituting, we have
potential energy PE = 80 x 9.81 x 80 = 62784 J
At an instance at the bottom of the hill
their kinetic energy = 
where
v is their velocity = 8.33 m/s
m is their total mass = 80 kg
substituting, we have
kinetic energy KE =
= 2775.6 J
Total work done on the cart is equal to the energy lost by the cart when it reached the bottom of the hill
work done by friction = PE - KE = 62784 - 2775.6 = <em>60008.4 J</em>