Answer:
497.143 nm.
Explanation:
Diffraction grating experiment is actually done by passing light through diffraction glasses, the passage of the light causes some patterns which can be seen on the screen. This is because light is a wave and it can spread.
The solution to the question is through the use of the formula in the equation (1) below;
Sin θ = m × λ. ---------------------------------(1).
Where m takes values from 0, 1, 2, ...(that is the diffraction grating principal maxima).
Also, m × λ = dc/ B -------------------------------------------(2).
We are to find the second wavelength, therefore;
λ2 =( m1/c1) × (c2/m2) × λ1 ------------------------(3).
Where c1 and c2 are the order maximum and m = order numbers. Hence;
λ2 = (1/ .350) × (.870/3) × 600 = 497.143 nm.
Answer:
Controlled braking
Explanation:
CONTROLLED BRAKING occur in a situation where a person or an individual driving a vehicle releases the brake and slowly apply smooth as well as firmly pressure on the brake without the wheels been locked which is why CONTROLLED BRAKING are often used for emergency stops by drivers reason been that it helps to reduce speed when driving as fast as possible while the driver maintain the steering control of the vehicle.
Therefore the form of braking which is used to bring a vehicle to a smooth stop by applying smooth,steady pressure to the brake is called CONTROLLED BRAKING.
The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem
•THAT THE PROPAGATION OF SOUND WAVES NEED MEDIUM TO TRAVEL
•THE MEDIUM SHOULD POSSES ELASTICITY
•FOR THE FASTER PROPAGATION OF SOUND THE PARTICLES SHOULD BE VERY CLOSE TO EACH OTHER