The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;

The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;


Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915
Well i think it is false caus ebunch of products these day have metals incorparded in the product
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
According to your question although I think an object undergoing uniform circular motion is moving with a constant speed. Nevertheless, it is accelerating due to its change in direction. The direction of the acceleration is inwards,therefore a force perpendicular to an objects velocity change the direction of the velocity but not its magnitude.