Answer:
Carbon has 4 valence electrons (electrons that are used in bonding), and therefore it can make 4 bonds which is the most one can (other than some exceptions, but in general it is the most). It wants to make 4 bonds so it can reach a full octet of 8 elections, hence the rule of 8.
Explanation:
Answer:
-1 Coulomb meter = -2.997 × 10²⁹ Debye
Explanation:
Given:
Coulomb meter = -1 CM
Find:
In debye
Computation:
We know that,
1 Coulomb meter = 299,792,458,178,090,000,000,000,000,000 Debye
So,
-1 Coulomb meter = -299,792,458,178,090,000,000,000,000,000 Debye
-1 Coulomb meter = -2.997 × 10²⁹ Debye
Answer:
Force of attraction = 35.96
N
Explanation:
Given: charge on anion = -2
Charge on cation = +2
Distance = 1 nm =
m
To calculate: Force of attraction.
Solution: The force of attraction is calculated by using equation,
---(1)
where, q represents the charge and the subscripts 1 and 2 represents cation and anion.
k = 
F = force of attraction
r = distance between ions.
Substituting all the values in the equation (1) the equation becomes

Force of attraction = 35.96
N
The correct answer is: [D]: " milk " .
__________________________________________________________
Choice [A]: "soil" is incorrect; since "soil" is "heterogeneous" {composed of many different "ingredients" .].
__________________________________________________________
Same with "Choice [B]: "granola" [composed of many different ingredients—clumps of sweetened oats, raisins, coconuts, etc.].
__________________________________________________________
Same with "Choice [C]: "salad dressing". {Notice how we usually have to "shake the bottle" ? Composed of multiple ingredients, (e.g. oil, vinegar, and spices, or oil and other spices, and more ingredientes).
__________________________________________________________
Choice: [D]: "milk", as a liquid, is a single, well-mixed, uniform, mixture; as such, it is "homogeneous". Note: "homo-" means "same".
__________________________________________________________
Answer is: the freezing point is 1.63°C and boiling point is 82.01°C.<span>.
1) n(</span><span>nonelectrolyte solute) = 0.656 mol.
</span>m(C₆H₆ - benzene) = 869 g ÷ 1000 g/kg.
m(C₆H₆) = 0.869 kg.<span>
b(solution) = n(</span>nonelectrolyte solute) ÷ m(C₆H₆).<span>
b(solution) = 0.656 mol ÷ 0.869 kg.
b(solution) = 0.754 mol/kg.
2) ΔT = Kf(benzene) · b(solution).
ΔT = 5.12°C/m · 0.754 m.
ΔT = 3.865°C.
Tf = 5.50°C - 3.865°C.
Tf = 1.63°C.
</span>
3) ΔTb = Kb(benzene) · b(solution).
ΔTb = 2.53°C/m · 0.754 m.
ΔTb = 1.91°C.
Tb = 80.1°C + 1.91°C.
Tb = 82.01°C.<span>
</span>