Entropy change is defined only along the path of an internally reversible process path.
<h3><u>What is Entropy Change </u>?</h3>
- Entropy is a measure of a thermodynamic system's overall level of disorder or non-uniformity. The thermal energy that a system was unable to use to perform work is known as entropy.
- Entropy Change is a phenomena that measures how disorder or randomness have changed inside a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work. More unpredictability in a thermodynamic system indicates high entropy.
- Entropy is a state function, hence it is independent of the direction that the thermodynamic process takes.
- The rearranging of atoms and molecules from their initial state causes the change in entropy.
- This may result in a decrease or rise in the system's disorder or unpredictability, which will, in turn, result in a corresponding drop or increase in entropy.
To view more questions about entropy change, refer to:
brainly.com/question/4526346
#SPJ4
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer: 0.5 kg
Explanation:
Force of launched skyrocket = 10 N
Acceleration of skyrocket = 20 m/s squared (i.e 20m/s^2)
Mass of the skyrocket = ?
Recall that Force is the product of the mass of an object by the acceleration by which it moves.
i.e Force = Mass x Acceleration
10N = Mass x 20m/s^2
Mass = (10N/20m/s^2)
Mass = 0.5 kg
Thus, the mass of this skyrocket is 0.5 kilograms
Answer:
2835 J
Explanation:
Take the specific heat capacity of water as 4.2 J/ g°C.
Energy (heat) = mass x specific heat capacity x change in temperature
(E= mcΔT)
E = 27 x 4.2 x (45-20)
E = 2835 J
Because the reactants react with each other and chemically react to produce a different product like with fire when it reacts with the wood it burns and the product left behind is a new different substance from the reactants in this case the product is ash