Electric Forces. ... Just like objects that have mass exert gravitational forces on each other, objects that are charged will also exert electric forces on each other. The electric force is directly proportional to the charge of the two objects and inversely proportional to the distance between them squared.
A parallel circuit exists when an electric charge flows in more than one path best describes it.
<h3>What is a Parallel circuit?</h3>
This type of circuit has branches in which the current divides and only part of it flows through any of the branch.
Parallel circuit having more than one branch therefore means that electric charge will flow in more than one path thereby making option A the most appropriate choice.
Read more about Parallel circuit here brainly.com/question/12069231
Answer:
ΔU = 5.21 × 10^(10) J
Explanation:
We are given;
Mass of object; m = 1040 kg
To solve this, we will use the formula for potential energy which is;
U = -GMm/r
But we are told we want to move the object from the Earth's surface to an altitude four times the Earth's radius.
Thus;
ΔU = -GMm((1/r_f) - (1/r_i))
Where;
M is mass of earth = 5.98 × 10^(24) kg
r_f is final radius
r_i is initial radius
G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Since, it's moving to altitude four times the Earth's radius, it means that;
r_i = R_e
r_f = R_e + 4R_e = 5R_e
Where R_e is radius of earth = 6371 × 10³ m
Thus;
ΔU = -6.67 × 10^(-11) × 5.98 × 10^(24)
× 1040((1/(5 × 6371 × 10³)) - (1/(6371 × 10³))
ΔU = 5.21 × 10^(10) J
I believe thye answer is either d or c
Answer:
Θ
Θ
Θ =
Explanation:
Applying the law of conservation of momentum, we have:
Δ
Θ (Equation 1)
Δ
Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ =
Replacing Equation 3 in Equation 4:
Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
Θ=