Answer:
Answer: C
explanation:
They could be same or different
ie:
|-5|,|-5| = 5,5
|-5|,|5| = 5,5
<u>Force</u>, it can speed up or slow down an object which can change the direction in which an object is moving.
I think it is the wave energy.
Wave energy also known as the ocean energy is the energy harnessed from the ocean or sea waves. It is a source of power that comes from the endless march of the waves as they roll into the shore then back out. Using wave energy is advantageous as they are environmental friendly as there are no harmful byproducts, and also the energy from waves can be taken directly into electricity-producing machinery and used to power generators.
Answer:
Explanation:
consider the principle of moment
when a system is in equilibrium, the clockwise moment (torque) about the pivot is equal to the counterclockwise moment ( torque). Since the plank is uniform the weight of the plank act at the middle which = 6.1 m / 2 = 3.05 m
the distance that can support the weight of the man = d
mass of the man = 70
70 × d = 33 × ( 3.05 - 1.6)
d = 47.85 / 60 = 0.798 m, if the man work beyond this point he will fall.
Answer:
For the Carnot air conditioner working as a heat pump between 63 and 100°F , It would transfer 3.125 Joules of heat for each Joule of electric energy supplied.
Explanation:
The process described corresponds to a Carnot Heat Pump. A heat pump is a devices that moves heat from a low temperature source to a relative high temperature destination. <em>To accomplish this it requires to supply external work</em>.
For any heat pump, the coefficient of performance is a relationship between the heat that is moving to the work that is required to spend doing it<em>.</em>
For a Carnot Heat pump, its coefficient of performance is defined as:
Where:
- T is the temperature of each heat deposit.
- The subscript H refers to the high temperature sink(in this case the outdoors at 100°F)
- The subscript L refers to the low temperature source (the room at 63°F)
Then, for this Carnot heat pump:

So for each 3.125 Joules of heat to moved is is required to supply 1 Joule of work.