Nitrogen has 7 protons, 7 neutrons, and 7 electrons.
Seven protons, seven neutrons, and seven electrons make up nitrogen-14.
Utilize the atomic number and mass number of an atom to determine the number of subatomic particles it contains: Atomic number Equals proton count. Electron count equals atomic number. Atomic number - mass number equals the number of neutrons.
Seven protons, seven neutrons, and seven electrons make up the atom of nitrogen. The nucleus is the collection of protons and neutrons that make up the center of an atom. The 7 electrons, which are much smaller than the nucleus, orbit it in what is known as orbits. Since nitrogen-14 is a neutral atom, the number of protons in its nucleus must match the number of electrons around it.
Learn more about atomic numbers at brainly.com/question/2942556
#SPJ4.
Answer:
An elementary particle that is identical with the nucleus of the hydrogen atom, that along with the neutron is a constituent of all other atomic nuclei, that carries a positive charge numerically equal to the charge of an electron.
Example:
The nucleus of a hydrogen atom or the H+ ion is an example of a proton. Regardless of the isotope, each atom of hydrogen has 1 proton; each helium atom contains 2 protons; each lithium atom contains 3 protons and so on.
Answer:
Explanation:
Iso-electronic species have same number of electrons . Positive charged ions will have smaller size . As electrons add , size increases due to electronic repulsion .
Following species are isoelectronic .
Al³⁺ < Mg²⁺ < Na¹⁺ < Ne < F⁻¹ < O⁻² < N⁻³
Answer:
Explanation:
You would have to add up the atomic masses of all the compounds in the compound, making sure you include how many molecules of each are in the compound
For example, in CuSOA we have 1 molecule of Cu and S, as 4 molecules of O
The atomic masses are as follows:
Cu = 63.55 u
S = 32.065 u
O = 15.99 units
This is how we would add it up:
(Atomic mass of Cu) + (Atomic mass of S) + 4(Atomic Mass of O)
(63.55) + (32.065) + 4(15.99)
(63.55) + (32.065) + 63.96
= 159.575 u
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.