The volume : 8,526 quarts
<h3>Further explanation</h3>
Given
The density of whole milk = 1.04 g/ml
mass = 18.5 pounds
Required
The volume
Solution
Conversion of mass
1 pound = 453,592 g
18.5 pounds = 8391,45 g
Density formula:
.
Input the value :
V = m : ρ
V = 8391,45 g : 1.04 g/ml
V = 8068.7 ml
1 ml = 0,00105669 quarts
8068.7 ml =8,526 quarts
Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL
because it has ns1 electron configuration like the alkali metals
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.