1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
12

QUESTÃO 13. Explique o uso das aspas no trecho "Darei a cada uma de vocês

Engineering
1 answer:
lesya [120]3 years ago
6 0

Answer: speaks Portuguese

Eu disse a todos a tradução para que possam te ajudar

Explanation: Y’all can help I have no idea

QUESTION 13. Explain the use of quotation marks in the excerpt "I will give each of you

seed. The one who will bring me the most beautiful flower within six months will be chosen but

wife and the future empress of China. ".

QUESTION 14. The palace servant considered the idea of ​​her daughter attending the celeb

organized by the prince of the region, a foolish idea, a madness. This is an OP

Do you agree with this opinion of the character? Justify your answer.

You might be interested in
Select the correct answer. Which existing technology did engineers use to enhance the speed of propeller-driven airplanes
Musya8 [376]

metallurgy:

Explanation:

7 0
2 years ago
The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature
Anit [1.1K]

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

6 0
3 years ago
Design process 8 steps with definition​
Troyanec [42]

Answer:

Step 1: Define the Problem.  

Step 2: Do Background Research. .

Step 3: Specify Requirements. .

Step 4: Brainstorm, Evaluate and Choose Solution.  

Step 5: Develop and Prototype Solution.  

Step 6: Test Solution.

Step 7: Does Your Solution Meet the Requirements?  

Step 8: Communicate Results.

can u tell me the definition tho?

palled correctly as “though” which is an alternate form of “although”) at the end is informal usage. It's better placed before “she seems better today

8 0
3 years ago
H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 30 m/s and the mass flow rate
Colt1911 [192]

Answer:

The flow velocity at outlet is approximately 37.823 meters per second.

The inlet radius of the nozzle is approximately 0.258 meters.

Explanation:

A conical nozzle is a steady state device used to increase the velocity of a fluid at the expense of pressure. By First Law of Thermodynamics, we have the energy balance of the nozzle:

Energy Balance

\dot m \cdot \left[\left(h_{in}+\frac{v_{in}^{2}}{2} \right)-\left(h_{out}+\frac{v_{out}^{2}}{2} \right)\right]= 0 (1)

Where:

\dot m - Mass flow, in kilograms per second.

h_{in}, h_{out} - Specific enthalpies at inlet and outlet, in kilojoules per second.

v_{in}, v_{out} - Flow speed at inlet and outlet, in meters per second.

It is recommended to use water in the form of superheated steam to avoid the appearing of corrosion issues on the nozzle. From Property Charts of water we find the missing specific enthalpies:

Inlet (Superheated steam)

p = 2000\,kPa

T = 300\,^{\circ}C

h_{in} = 3024.2\,\frac{kJ}{kg}

\nu_{in} = 0.12551\,\frac{m^{3}}{kg}

Where \nu_{in} is the specific volume of water at inlet, in cubic meters per kilogram.  

Outlet (Superheated steam)

p = 600\,kPa

T = 160\,^{\circ}C

h_{out} = 2758.9\,\frac{kJ}{kg}

If we know that \dot m = 50\,\frac{kJ}{kg}, h_{in} = 3024.2\,\frac{kJ}{kg}, h_{out} = 2758.9\,\frac{kJ}{kg} and v_{in} = 30\,\frac{m}{s}, then the flow speed at outlet is:

35765-25\cdot v_{out}^{2} = 0 (2)

v_{out} \approx 37.823\,\frac{m}{s}

The flow velocity at outlet is approximately 37.823 meters per second.

The mass flow is related to the inlet radius (r_{in}), in meters, by this expression:

\dot m = \frac{\pi \cdot v_{in}\cdot r_{in}^{2} }{\nu_{in}} (3)

If we know that \dot m = 50\,\frac{kJ}{kg}, v_{in} = 30\,\frac{m}{s} and \nu_{in} = 0.12551\,\frac{m^{3}}{kg}, then the inlet radius is:

r_{in} = \sqrt{\frac{\dot m\cdot \nu_{in}}{\pi\cdot v_{in}}}

r_{in}\approx 0.258\,m

The inlet radius of the nozzle is approximately 0.258 meters.  

7 0
3 years ago
A metal alloy has been tested in a tensile test with the following results for the flow curve
MA_775_DIABLO [31]

Answer:

dhjdjs

Explanation:

ehejsikajaudiieisisjsjsjsjsjjsjsjsjsjs

4 0
3 years ago
Other questions:
  • A hanging wire made of an alloy of nickel with diameter 0.19 cm is initially 2.8 m long. When a 59 kg mass is hung from it, the
    15·1 answer
  • The greater the force applied to an object, the _____ the change in speed or direction of the object.
    6·1 answer
  • an existing highway-railway at-grade crossing is being redesigned as grade separated to improve traffic operations. The railway
    8·1 answer
  • Ultimate tensile strength is: (a) The stress at 0.2% strain (b) The stress at the onset of plastic deformation (c) The stress at
    7·1 answer
  • A reciprocating compressor takes a compresses it to 5 bar. Assuming that the compression is reversible and has an index, k, of 1
    14·1 answer
  • Calculate the resistance of a circuit with 1.5 A and 120 V. Use the appropriate formula from the list of formulas on the
    9·1 answer
  • Tech A says you can find the typical angle of a V-block engine by dividing the number of cylinders by 720
    11·1 answer
  • Can I put a fork in electric socket?
    9·2 answers
  • which of the following tools is used for measuring small diameter holes which a telescoping gauge cannot fit into? A. telescopin
    13·1 answer
  • a low velocity fastening system that is used to drive steel pins or threaded studs into a masonry and steel is a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!