1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
8

Which permission do you need to shoot on the owner’s property?

Engineering
1 answer:
Elena L [17]3 years ago
4 0

Answer:

filming permit,

( MARK ME BRAINLIEST!!)

You might be interested in
Im passed due someone help meeeeeee
vovangra [49]

Answer:

how are supposed to help when you can't do anything?

8 0
3 years ago
Read 2 more answers
A. The ragion was colonized by European powers
alex41 [277]

Answer:

?

Explanation:

3 0
3 years ago
Conditions of special concern: i. Suggest two reasons each why distillation columns are run a.) above or b.) below ambient press
lutik1710 [3]

Solution :

Methods for selling pressure of a distillation column :

a). Set, \text{based on the pressure required to condensed} the overhead stream using cooling water.

  (minimum of approximate 45°C condenser temperature)

b). Set, \text{based on highest temperature} of bottom product that avoids decomposition or reaction.

c). Set, \text{based on available highest } not utility for reboiler.

Running the distillation column above the ambient pressure because :

The components to be distilled have very high vapor pressures and the temperature at which they can be condensed at or below the ambient pressure.

Run the reactor at an evaluated temperature because :

a). The rate of reaction is taster. This results in a small reactor or high phase conversion.

b). The reaction is endothermic and equilibrium limited increasing the temperature shifts the equilibrium to the right.

Run the reaction at an evaluated pressure because :

The reaction is gas phase and the concentration and hence the rate is increased as the pressure is increased. This results in a smaller reactor and /or higher reactor conversion.

The reaction is equilibrium limited and there are few products moles than react moles. As increase in pressure shifts the equilibrium to the right.

7 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
4 years ago
Controlling your vehicle
Ratling [72]

Answer:

5. D

6. c

7. d

Explanation:

3 0
4 years ago
Other questions:
  • Consider the fully developed flow of glycerin at 40°C through a 60-m-long, 4-cm-diameter, horizontal, circular pipe. If the flow
    15·1 answer
  • Three single-phase, 10 kVA, 2400/280 V, 60-Hz transformers are connected to form a three-phase, 2400/480 V transformer The equiv
    15·1 answer
  • Communication "works" to the degree that a wide variety of information is completely and thoroughly shared among the parties, an
    13·1 answer
  • Explain why you chose the final design of your prototype and how it solved the identified need
    9·1 answer
  • Why excess air is required to burn a fuel completely
    8·2 answers
  • Hi, can anyone draw me an isometric image of this shape?​
    7·2 answers
  • Technician A says that the enable criteria are the criteria that must be met before the PCM completes a monitor test. Technician
    8·1 answer
  • Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
    6·1 answer
  • True or false for the 4 questions?
    8·1 answer
  • 8th grade safety test
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!