Ionising radiation (ionizing radiation) is radiation that carries enough energy to free electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds (usually greater than 1% of the speed of light), and electromagnetic waves on the high-energy end of the electromagnetic spectrum.
To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

According to Newton's second law, the net force acting on the jet is
F = ma
Here,
m = mass
a = acceleration
v = Velocity
r = Radius
PART A ) Equating the above two expression the equation for radius is


Replacing with our values we have that
![r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B7%289.8m%2Fs%5E2%29%7D)

PART B )
<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

![N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29%2B%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>
<u>- The expression for effective weight of the pilot at the top of the circle is</u>

![N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}](https://tex.z-dn.net/?f=N%20%3D%20%2869kg%29%289.8m%2Fs%5E2%29-%5Cfrac%7B%2869%29%281140km%2Fhr%5B%5Cfrac%7B1000m%7D%7B1km%7D%5Cfrac%7B1hour%7D%7B3600s%7D%5D%29%5E2%7D%7B1.462%2A10%5E3m%7D)

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>
Two sustainability challenges you would face when developing a sustainable food supply for a Martian colony would relate to Martian radiation and soil characteristics.
According to experiments carried out, Martian radiation is about 17 times more intense than on Earth, which impacts vegetation growth and crop quality.
Therefore, it is necessary to develop resources that enable a sustainable food supply in remote locations, such as for a Martian colony, as some production challenges may be related to food resistance and the amount of oxygen and water needed for growth.
Some solutions, therefore, could be planting in an underground shelter, which would be a controlled environment where conditions would be more favorable for the production of food with greater quality and diversity.
Learn more about sustainability here:
brainly.com/question/25713190
Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s