1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
14

You need to focus a 10 mW, 632.8 nm Gaussian laser beam that is 5.0 mm in diameter into a sample. You have access to a lens with

a focal length of 6.0 cm and focal length of 12.0 cm. For both lenses, the light fills the size of the lens. Using the Gaussian beam equations, what is the smallest diameter of the beam (known as the beam waist) for each lens
Physics
1 answer:
Anna [14]3 years ago
8 0

Answer:

ee that the lens with the shortest focal length has a smaller object

           

Explanation:

For this exercise we use the constructor equation or Gaussian equation

        \frac{1}{f}  = \frac{1}{p} + \frac{1}{q}

where f is the focal length, p and q are the distance to the object and the image respectively.

Magnification a lens system is

          m = \frac{h'}{h} = - \frac{q}{p}

             h ’= -\frac{h q}{p}

In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞

Let's calculate the distance to the image for each lens

f = 6.0 cm

           \frac{1}{q} = \frac{1}{f }  - \frac{1}{p}

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf

          q = f = 6.0 cm

for the lens of f = 12.0 cm q = 12.0 cn

to find the size of the image we use

           h ’= h q / p

where p has a high value and is the same for all systems

           h ’= h / p q

Thus

f = 6 cm h ’= fo 6 cm

 

f = 12 cm h ’= fo 12  cm

therefore we see that the lens with the shortest focal length has a smaller object

You might be interested in
Which are methods of reducing exposure to ionizing radiation? Check all that apply
MariettaO [177]
Ionising radiation (ionizing radiation) is radiation that carries enough energy to free electrons from atoms or molecules, thereby ionizing them. Ionizing radiation is made up of energetic subatomic particles, ions or atoms moving at high speeds (usually greater than 1% of the speed of light), and electromagnetic waves on the high-energy end of the electromagnetic spectrum.
6 0
3 years ago
Read 2 more answers
Myoncedyret
konstantin123 [22]

Answer:

i need help too

Explanation:

8 0
3 years ago
If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that
AnnZ [28]

To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

F_c = \frac{mv^2}{r}

According to Newton's second law, the net force acting on the jet is

F = ma

Here,

m = mass

a = acceleration

v = Velocity

r = Radius

PART A ) Equating the above two expression the equation for radius is

\frac{mv^2}{r} = ma

r = \frac{v^2}{a}

Replacing with our values we have that

r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}

r = 1.462*10^3m

PART B )

<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

N = mg +\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 5408.87N

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>

<u>- The expression for effective weight of the pilot at the top of the circle is</u>

N = mg -\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 4056.47N

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>

4 0
3 years ago
1. As a group, write down two challenges in terms of sustainability you would face when developing a sustainable food supply for
Stolb23 [73]

Two sustainability challenges you would face when developing a sustainable food supply for a Martian colony would relate to Martian radiation and soil characteristics.

According to experiments carried out, Martian radiation is about 17 times more intense than on Earth, which impacts vegetation growth and crop quality.

Therefore, it is necessary to develop resources that enable a sustainable food supply in remote locations, such as for a Martian colony, as some production challenges may be related to food resistance and the amount of oxygen and water needed for growth.

Some solutions, therefore, could be planting in an underground shelter, which would be a controlled environment where conditions would be more favorable for the production of food with greater quality and diversity.

Learn more about sustainability here:

brainly.com/question/25713190

7 0
2 years ago
Once again we have a skier on an inclined plane. The skier has mass M and starts from rest. Her speed at the bottom of the slope
mars1129 [50]

Answer:

v = 31.3 m / s

Explanation:

The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.

Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane

Highest point

       Em₀ = U = m g y

Lowest point

     Em_{f} = K = ½ m v²

As there is no friction, mechanical energy is conserved

       Em₀ = Em_{f}

       m g y = ½ m v²

       v = √ 2 g y

Where we can use trigonometry to find and

       sin 30 = y / L

       y = L sin 30

Let's replace

      v = RA (2 g L sin 30)

Let's calculate

      v = RA (2 9.8 100.0 sin30)

      v = 31.3 m / s

4 0
3 years ago
Other questions:
  • I need help with this one
    11·1 answer
  • A soup company wants to manufacture a can in the shape of a right circular cylinder that will hold 500 cm^3 of liquid. The mater
    7·1 answer
  • The lengths of two sides of a right triangle are given.Find the length of the third side. Round to the nearest tenth if necessar
    10·1 answer
  • Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
    13·2 answers
  • Choose the list below that properly arranges objects in the Solar System (from closest to farthest from the center). Select one:
    13·2 answers
  • suppose you had two socks sticking together in the clothes dryer from static electricity.what happens if they are spun gently?
    13·1 answer
  • A 12m long gate that is 4 m wide is placed against a body of water at an angle of 60 degrees. The gate is being pulled by a rope
    8·1 answer
  • How does the size of a wind turbine affect its energy output?
    10·1 answer
  • ELE Review questions
    12·1 answer
  • I’m sorry, but the person you are calling has a voice mailbox that has not been set up yet.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!