The light reactions could be viewed as analogous to a hydroelectric dam. In that case, the wall of the dam that holds back the water would be analogous to the thylakoid membrane.
Thylakoid membrane is present in cyanobacteria and chloroplasts of plants. It plays a crucial role in photosynthesis and photosystem II reactions.
In general, these are the regions where light-dependent reactions take place. The thylakoid membrane is a lipid-bound membrane that maintains potential difference and also controls the flow of liquids across the membrane during light reactions.
In the provided case, we can see that the wall of the dam holds back the water, similarly, in light-dependent reactions, thylakoid membranes control the liquid flow and also regulate the potential gradient across the membrane and also allow the selective proteins to pass through.
If you need to learn more about light reactions click here:
brainly.com/question/26623807
#SPJ4
Convert the units of power,W = 7 hp = 7 * 745.69 = 5219.83 WCalculate the power input to the pump using the efficiency of the pump equationn=Wpump/Wshaft
Substitute 0.82 for n and 5219.83 for Wshaft0.82=Wpump/5219.83 Wpump=0.82*5219.83=4280.26 WCalculate the mass flow ratein=Wpump/(gz_2 )Where g is the acceleration due to gravity, and z_2 is the elevation of water. Substitute 4280.26 for Wpump, 9.81 m/s^2 for g, and 19m for z_2in = 4280.26 / 9.81 * 19 = 22.9640 m^3/sCalculate the volume flow rate of waterV=m/ρWhere ρ is the density of water. Substitute 22.9640 m^3/s for in and 1000 m^3/kg for ρ, we get V = 22.9640 / 1000 = 0.0230 kg/sTherefore, the volume flow rate of water is 0.0230 kg/s
Answer:
0 to 145 degrees
Explanation:
The normal range of flexion and extension is from 0 to 145 degrees.
Answer:
c. They hit at the same time
b. BGS
Explanation:
A marble dropped (initial vertical velocity is 0) will land at the same time as a marble launched horizontally (initial vertical velocity is 0) from the same height.
Boat S has a net speed of 5 m/s (10 − 5).
Boat B has a net speed of 15 m/s (10 + 5).
Boat G has a net speed of ≈11.2 m/s (√(10² + 5²)).
The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is √(2² + 3²) = √13 m from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.