Answer:
the correct answer is c, they will accelerate away from each other at different speeds. the 80kg will go faster due to less mass
<span>When a red giang complete helium fusion and collapses, it becomes a white dwarf. The correct option is C. White dwarf are very dense stars that are usually the size of a planet. It is a stellar core reminant which mainly made up of electron degenerated matters; its mass is comparable to that of the sun while its volume is comparable to that of the earth. </span>
Answer:
15 cm
Explanation:
= Diameter of the coin = 15 mm
= Diameter of the image of coin = 5 mm
= distance of the coin from mirror = 15 cm
= distance of the image of coin from mirror = ?
Using the equation


= - 5 cm
= radius of curvature
Using the mirror equation


= - 15 cm
1. D - sound travels the fastest through solids
2. 50 mm/s - v=fa
3. B - only process that involves changing waves
Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s