Answer:F=0.0882kg
Explanation:
The period it takes to make one revolution is 1.5 seconds / revolutions,
v = r * (change in angle / change in time)
the change in angle is 2pi, for one whole revolution. the time is 1.5 second per revolution, and the radius is 0.1.
v = (2 * pi * 0.1 cm * / 1.5second
v = 0.42m/s
a=v^2/r
a=0.42^2 /0.1 =1.764m/s2
F=ma
F=0.05*1.764
F=0.0882kg
Answer:
we need the graph to answer the question.
Let
M = the mass of the planet
n = the mass of the satellite.
r = the radius of the planet
When the satellite is at a distance r from the surface of the planet, the distance between the centers of the two masses is 2r.
The gravitational force between them is

where
G = the gravitational constant.
When the satellite is on the surface of the planet, the distance between the two masses is r.
The gravitational force between them is

Answer:
Answer:
the velocity of the water flow is 7.92 m/s
Explanation:
The computation of the velocity of the water flow is as follows
Here we use the Bernouli equation
As we know that

= 7.92 m/s
Hence, the velocity of the water flow is 7.92 m/s
We simply applied the above formula so that the correct value could come
And, the same is to be considered
Answer: 25.7m/s
Explanation: the cars have equal masses so we only consider their velocities,
The cars traveled together at 65° north of east this is with a velocity equal to the resultant velocity,
Using the force diagram as shown below;
Tan 65° = Vn/Ve
Ve is velocity of the car traveling east
Vn is velocity of car traveling north
Tan 65° = V2/12
2.144 = V2/12
V2 = 12 * 2.144
V2 = 25.7 m/s