<h2>
The average speed of the moon around the earth is 1021.74 m/s</h2>
Explanation:
Radius of moon around earth, r = 3.84 × 10⁸ m
Circumference of orbit = 2πr = 2 x 3.14 x 3.84 × 10⁸
Circumference of orbit = 2.41 x 10⁹ m
Time taken, t = 27.3 days = 27.3 x 24 x 60 x 60 = 2358720 seconds
We have
Circumference of orbit = Speed of moon x Time taken
2.41 x 10⁹ = Speed of moon x 2358720
Speed of moon = 1021.74 m/s
The average speed of the moon around the earth is 1021.74 m/s
Its momentum doubles as well. Considering momentum equals M•V. Regardless of velocity (except if it’s not moving, in that case it doesn’t have any momentum) it will be double.
Answer:
C Volume
Explanation:
You would use a graduated cylinder with liquid in it to see how much is displaced when the object is placed in it to determine the volume of the object
Answer:
See the answers below
Explanation:
We can solve this problem using the principle of energy conservation. That is, the energy is conserved before and after dropping the bag.
For this case we have mechanical energy, which is the sum of the kinetic and potential energies.

where:

Ek = kinetic energy [J] (units of Joules)
Ep = potential energy [J]
In the final Energy (2), there is only potential energy. since when the balloon reaches the maximum height its velocity is zero, that is, there is no kinetic energy.
A)
![m*g*h+\frac{1}{2}*m*v^{2} =m*g*h_{1} \\9.81*50+0.5*(15)^{2}=9.81*h_{1}\\h_{1} = 61.46 [m]](https://tex.z-dn.net/?f=m%2Ag%2Ah%2B%5Cfrac%7B1%7D%7B2%7D%2Am%2Av%5E%7B2%7D%20%3Dm%2Ag%2Ah_%7B1%7D%20%5C%5C9.81%2A50%2B0.5%2A%2815%29%5E%7B2%7D%3D9.81%2Ah_%7B1%7D%5C%5Ch_%7B1%7D%20%3D%2061.46%20%5Bm%5D)
B)
With the value calculated above we can find the acceleration of the balloon.
The distance traveled is the difference between the maximum height and 50 meters.
![x = 61.46-50\\x = 11.46[m]](https://tex.z-dn.net/?f=x%20%3D%2061.46-50%5C%5Cx%20%3D%2011.46%5Bm%5D)
With the following equation of kinematics.

![0 = 15^{2} +2*a*11.46\\a = - 9.816 [m/s^{2} ]](https://tex.z-dn.net/?f=0%20%3D%2015%5E%7B2%7D%20%2B2%2Aa%2A11.46%5C%5Ca%20%3D%20-%209.816%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign indicates that the acceleration acts downward. That is, in the opposite direction to the movement.
We can use the following equation of kinematics to find the final velocity after 4 seconds.
![v_{f}=v_{o}-a*t\\v_{f}=15-9.816*(4)\\v_{f}=-24.24 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D-a%2At%5C%5Cv_%7Bf%7D%3D15-9.816%2A%284%29%5C%5Cv_%7Bf%7D%3D-24.24%20%5Bm%2Fs%5D)
Now the distance:
![v_{f}^{2} =v_{o}^{2}-2*a*x\\(24.24)^{2} =(15)^{2} -2*9.81*x\\x = 18.48 [m]\\x_{f}=50+18.48 = 68.48 [m]](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%20%3Dv_%7Bo%7D%5E%7B2%7D-2%2Aa%2Ax%5C%5C%2824.24%29%5E%7B2%7D%20%3D%2815%29%5E%7B2%7D%20-2%2A9.81%2Ax%5C%5Cx%20%3D%2018.48%20%5Bm%5D%5C%5Cx_%7Bf%7D%3D50%2B18.48%20%3D%2068.48%20%5Bm%5D)
c) Using the following equation of kinematics.
![v_{f}=v_{o}-a*t\\0 = 15-9.81*t\\15=9.81*t\\t = 1.52 [s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D-a%2At%5C%5C0%20%3D%2015-9.81%2At%5C%5C15%3D9.81%2At%5C%5Ct%20%3D%201.52%20%5Bs%5D)
''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.
<h3>
What is Second Law of Thermodynamics?</h3>
The Second Law of Thermodynamics says that "in all energy exchanges, if no energy enters or leaves the system, the potential energy of the state will always be less than the energy of the initial state."
So we can conclude that ''The freezer and room are not an isolated system, since electrical energy flows in.'' is the correct statement.
Learn more about law here: brainly.com/question/820417
#SPJ1