1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leni [432]
2 years ago
13

What is one function of a transistor?

Physics
1 answer:
const2013 [10]2 years ago
8 0

Answer:

amplifying signals is the correct answer

Explanation:

You might be interested in
A firecracker breaks up into two pieces , one has a mass of 200 g and files off along the x –axis with a speed of 82.0 m/s and t
Readme [11.4K]

Answer:

A) 21.2 kg.m/s at 39.5 degrees from the x-axis

Explanation:

Mass of the smaller piece = 200g = 200/1000 = 0.2 kg

Mass of the bigger piece = 300g = 300/1000 = 0.3 kg

Velocity of the small piece = 82 m/s

Velocity of the bigger piece = 45 m/s

Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s

Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s

since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems

Resultant momentum² = 16.4² + 13.5² = 451.21

Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis  ( tan^-1 (13.5 / 16.4)

5 0
3 years ago
While standing on a balcony a child drops a penny. The penny lands on the ground floor 1.5 s later. How fast was the penny trave
sveticcg [70]

Answer:

14.7 m/s.

Explanation:

From the question given above, the following data were obtained:

Time (t) = 1.5 s

Acceleration due to gravity (g) = 9.8 m/s².

Height = 11.025 m

Final velocity (v) = 0 m/s

Initial velocity (u) =?

We, can obtain the initial velocity of the penny as follow:

H = ½(v + u) t

11.025 = ½ (0 + u) × 1.5

11.025 = ½ × u × 1.5

11.025 = u × 0.75

Divide both side by 0.75

u = 11.025/0.75

u = 14.7 m/s

Therefore, the penny was travelling at 14.7 m/s before hitting the ground.

8 0
3 years ago
g In a certain binary-star system, each star has the same mass which is 8.2 times of that of the Sun, and they revolve about the
Mademuasel [1]

To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.

Kepler's third law tells us that the period is defined as

T^2 = \frac{4\pi^2 d^3}{2GM}

The given data are given with respect to known constants, for example the mass of the sun is

m_s = 1.989*10^{30}

The radius between the earth and the sun is given by

r = 149.6*10^9m

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun

Therefore:

m = 8.2*1.989*10^{30}

d = 6.2*149.6*10^6

Substituting in Kepler's third law:

T^2 = \frac{4\pi^2 d^3}{2}

T^2 = \frac{4\pi^2(6.2*149.6*10^9)^3}{2(6.674*10^{-11} )(8.2*1.989*10^30 )}

T=\sqrt{\frac{4\pi^2(6.2*149.6*10^9)^3}{2(6.674*10^{-11} )(8.2*1.989*10^30)}}

T = 120290789.7s

T = 120290789.7s(\frac{1year}{31536000s})

T \approx 3.8143 years

Therefore the period of this star is 3.8years

7 0
3 years ago
A 10.0 kg weather rocket generates a thrust of 230 NN . The rocket, pointing upward, is clamped to the top of a vertical spring.
blondinia [14]

Answer: 0.2m

Explanation: Firstly only the Rocket's Weight Compress the spring which can be found by

F_r=M_r*g\\F_r=10*9.81\\F_r=98.1N

According to Hooks Law

F_r=k*x\\x=F_r/k\\x=98.1/480\\x=0.2m

The part b and c of this question is done in the attachment

7 0
3 years ago
Please help with these questions. All questions are in the image.​
S_A_V [24]

1) Average speed

2) Displacement

Explanation:

1)

Speed is a scalar quantity which gives a measure of how fast a body is moving. It is equal to the ratio between the distance travelled by an object and the time taken to cover that distance:

speed = \frac{d}{\Delta t}

where

d is the distance covered

\Delta t is the time taken

It is important to note that being a scalar, speed does not have any direction. Moreover, distance is also a scalar quantity, which corresponds to the total length of the path covered by the object, regardless on the direction taken.

So, the equation "travelled distance/elapsed time" corresponds to the average speed. (where the term average refers to the fact we are not measuring the speed at a specific instant in time, but on a certain time interval \Delta t.

2)

Velocity is a vector quantity, so it has both a magnitude and a direction.

The magnitude of the velocity is given by:

velocity=\frac{\Delta x}{\Delta t}

where

\Delta x is the change in position (or displacement) of the object

\Delta t is the time taken

And the direction of the velocity corresponds to the direction of the displacement.

We must note that while distance does not depend on the direction, displacement does. In fact, displacement measures the difference between the initial and final position of the object.

Therefore, the equation "change in position / elapsed time" is equal to the average velocity.

Learn more about speed and velocity:

brainly.com/question/8893949 (speed)

brainly.com/question/5063905 (speed vs velocity)

brainly.com/question/5248528 (velocity)

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A 2.50 gram rectangular object has measurements of 22.0 mm, 13.5 mm, and 12.5 mm. what is the object's density in units of g/ml?
    10·1 answer
  • An electron has an uncertainty in its position of 587 pm . part a what is the uncertainty in its velocity?
    8·1 answer
  • If the shoe has less mass, it will experience _______________ (more, less, the same) friction as it would with more mass.
    12·1 answer
  • Choose an example of a vertical motion with a negative velocity and a negative acceleration.
    14·1 answer
  • How much work is needed to lift a 3kg create a vertical displacement of 22m
    10·1 answer
  • If the voltage in a circuit is 24 V and the current is 2 A, what is the total power in the circuit?
    9·2 answers
  • Calculate the acceleration for the following data: Initial Velocity=20 m/s, Final
    15·1 answer
  • You throw a ball straight up. Compare the sign of the work done by gravity while the ball goes up with the sign of the work done
    9·1 answer
  • a student attaches a 0.5 kg object to a 0.7 m string and rotates the object around her head and parallel to the ground. how much
    8·1 answer
  • A 5 kg ball is suspended on one cable. Calculate the tension in the cable.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!