Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
Answer:

Explanation:
Hello there!
In this case, since the reaction for the formation of ammonia is:

We can evidence the 1:2 mole ratio of nitrogen gas to ammonia; therefore, the appropriate stoichiometric setup for the calculation of the moles of the latter turns out to be:

And the result is:

Best regards!
Answer:
150.0 mL.
Explanation:
- It is known that the no. of millimoles of HNO₃ before dilution = the no. of millimoles of HNO₃ after dilution.
∵ (MV) before dilution = (MV) after dilution.
<em>∴ V before dilution = (MV) after dilution / M before dilution</em> = (0.15 M)(500.0 mL)/(0.50 M) = <em>150.0 mL.</em>