<u>Answer:</u> The mass defect for the formation of phosphorus-31 is 0.27399
<u>Explanation:</u>
Mass defect is defined as the difference in the mass of an isotope and its mass number.
The equation used to calculate mass defect follows:
![\Delta m=[(n_p\times m_p)+(n_n\times m_n)]-M](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%28n_p%5Ctimes%20m_p%29%2B%28n_n%5Ctimes%20m_n%29%5D-M)
where,
= number of protons
= mass of one proton
= number of neutrons
= mass of one neutron
M = mass number of element
We are given:
An isotope of phosphorus which is 
Number of protons = atomic number = 15
Number of neutrons = Mass number - atomic number = 31 - 15 = 16
Mass of proton = 1.00728 amu
Mass of neutron = 1.00866 amu
Mass number of phosphorus = 30.973765 amu
Putting values in above equation, we get:
![\Delta m=[(15\times 1.00728)+(16\times 1.00866)]-30.973765\\\\\Delta m=0.27399](https://tex.z-dn.net/?f=%5CDelta%20m%3D%5B%2815%5Ctimes%201.00728%29%2B%2816%5Ctimes%201.00866%29%5D-30.973765%5C%5C%5C%5C%5CDelta%20m%3D0.27399)
Hence, the mass defect for the formation of phosphorus-31 is 0.27399
Answer:
You would need 8 eight packs of water
Explanation:
32 x 2 (seeing as this is the amount of water each person consumes)
= 64 divided by 8 (the amount of water in each pack)
= 8 eight packs of water
(35/18.02)(6.02kJ)=11.6926 kiloJoules
Answer:
The Ideal Gas Law cannot be applied to liquids. The Ideal Gas Law is #PV = nRT#. That implies that #V# is a variable. But we know that a liquid has a constant volume, so the Ideal <u><em>Gas Law cannot apply to a liquid.</em></u>
Explanation:
this is my awnser soory if it was a multiple choice question plz mark brainliest
Answer: Molecules of gas are usually far apart and can be compressed unlike molecules of liquids.
Explanation:
The molecules of gases are usually far apart, moving freely and randomly, occupying extra space in the containing vessel. Hence, when compressed to become closely packed, gases have lower volume.
However, unlike gases, the molecules of a liquid are restricted, move less freely and occupy no extra space. Hence, liquids cannot be compressed, and their volume remains the same in their containing vessel.