1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
9

A 43 kg box is being pushed and pulled by

Physics
1 answer:
m_a_m_a [10]3 years ago
4 0

Answer:

a = - 0.209 [m/s²]

Explanation:

To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

∑F = m*a

We will take the positive forces to the right and the negative forces to the left.

155-277+113=43*a\\-9=43*a\\a = - 0.209[m/s^{2} ]

The negative sign means that the box accelerates in a negative direction to the left.

You might be interested in
All household circuits are wired in parallel. A 1140-W toaster, a 270-W blender, and a 80-W lamp are plugged into the same outle
VARVARA [1.3K]

Answer:

total current = 12.417 A

so it will not fuse as current is less than 15 A

Explanation:

given data

toaster = 1140-W

blender = 270-W

lamp = 80-W

voltage = 120 V

solution

we know that current is express as

current = power ÷ voltage   ......................1

here voltage is same in all three device

so

current by toaster is

I = \frac{1140}{120}

I = 9.5 A

and

current by blender

I = \frac{270}{120}

I = 2.25 A

and

current by lamp is

I = \frac{80}{120}

I = 0.667 A

so here device in parallel so

total current is = 9.5 A + 2.25 A + 0.667 A

total current = 12.417 A

so it will not fuse as current is less than 15 A

8 0
2 years ago
Two equally charged tiny spheres of mass 1.0 g are placed 2.0 cm apart. When released, they begin to accelerate away from each o
zhannawk [14.2K]

Answer:

The magnitude of the charge on each sphere is 0.135 μC

Explanation:

Given that,

Mass = 1.0

Distance = 2.0 cm

Acceleration = 414 m/s²

We need to calculate the magnitude of charge

Using newton's second law

F= ma

a=\dfrac{F}{m}

Put the value of F

a=\dfrac{kq^2}{mr^2}

Put the value into the formula

414=\dfrac{9\times10^{9}\times q^2}{1.0\times10^{-3}\times(2.0\times10^{-2})^2}

q^2=\dfrac{414\times1.0\times10^{-3}\times(2.0\times10^{-2})^2}{9\times10^{9}}

q^2=1.84\times10^{-14}

q=0.135\times10^{-6}\ C

q=0.135\ \mu C

Hence, The magnitude of the charge on each sphere is 0.135μC.

7 0
3 years ago
Read 2 more answers
A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it st
Morgarella [4.7K]

Answer:

<em> B.0</em>

Explanation:

Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s

Change in momentum = M(V-U)......................... Equation 1

where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.

Let: M = m kg and V = U = v m/s

Substituting these values into equation 1

Change in momentum = m(v-v)

Change in momentum = m(0)

Change in momentum = 0 kg.m/s

<em>Therefore the momentum of the ball has not changed.</em>

<em>The right option is B.0</em>

5 0
3 years ago
8.) If a car moving at 50km/h skids 15m with locked brakes, how far does the same car moving at 100km/h
pantera1 [17]

(8) A car starting with a speed <em>v</em> skids to a stop over a distance <em>d</em>, which means the brakes apply an acceleration <em>a</em> such that

0² - <em>v</em>² = 2 <em>a</em> <em>d</em> → <em>a</em> = - <em>v</em>² / (2<em>d</em>)

Then the car comes to rest over a distance of

<em>d</em> = - <em>v</em>² / (2<em>a</em>)

Doubling the starting speed gives

- (2<em>v</em>)² / (2<em>a</em>) = - 4<em>v</em>² / (2<em>a</em>) = 4<em>d</em>

so the distance traveled is quadrupled, and it would move a distance of 4 • 15 m = 60 m.

Alternatively, you can explicitly solve for the acceleration, then for the distance:

A car starting at 50 km/h ≈ 13.9 m/s skids to a stop in 15 m, so locked brakes apply an acceleration <em>a</em> such that

0² - (13.9 m/s)² = 2 <em>a</em> (15 m) → <em>a</em> ≈ -6.43 m/s²

So the same car starting at 100 km/h ≈ 27.8 m/s skids to stop over a distance <em>d</em> such that

0² - (27.8 m/s)² = 2 (-6.43 m/s²) <em>d</em> → <em>d</em> ≈ 60 m

(9) Pushing the lever down 1.2 m with a force of 50 N amounts to doing (1.2 m) (50 N) = 60 J of work. So the load on the other end receives 60 J of potential energy. If the acceleration due to gravity is taken to be approximately 10 m/s², then the load has a mass <em>m</em> such that

60 J = <em>m g h</em>

where <em>g</em> = 10 m/s² and <em>h</em> is the height it is lifted, 1.2 m. Solving for <em>m</em> gives

<em>m</em> = (60 J) / ((10 m/s²) (1.2 m)) = 5 kg

(10) Is this also multiple choice? I'm not completely sure, but something about the weight of the tractor seems excessive. It would help to see what the options might be.

4 0
3 years ago
The overhang beam is subjected to the uniform distributed load having an intensity of w = 50 kn/m. determine the maximum shear s
alex41 [277]
Given:

Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.

We need to determine the maximum shear stress developed in the beam:

τ = F/A

Assuming the area of the beam is 100 m^2 with a length of 10 m.

τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
8 0
3 years ago
Other questions:
  • Suppose you see two main-sequence stars of the exact same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by
    8·1 answer
  • What are the similarities and differences between light and sound waves?
    15·2 answers
  • Which force keeps and object moving in a circle?​
    12·1 answer
  • I need some help with these two, im really struggling with them.
    11·2 answers
  • Your friend wants to make an electromagnet strong enough to lift a heavy metal object. What are some suggestions you would give
    6·1 answer
  • Formula for calculating work done in machines ​
    13·1 answer
  • This parallel circuit has three resistors R1-120 ohm; R2-45 ohm: R3=360
    8·1 answer
  • How does increasing energy affect the amplitude of a wave?​
    8·1 answer
  • How many milliliters are in 3.2 L? (1000 mL = 1L)
    14·2 answers
  • Which statement about a Ferris wheel is true?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!