1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SSSSS [86.1K]
3 years ago
13

In April 1974, Steve Prefontaine completed a 10 km race in a time of 27 min, 43.6 s. Suppose "Pre" was at the 8.13 km mark at a

time of 25.0 min. If he accelerated for 60 s and then maintained his increased speed for the remainder of the race. calculate his acceleration over the 60 s interval. Assume his instantaneous speed at the 8.13 km mark was the same as his overall average speed up to that time.
Physics
1 answer:
SOVA2 [1]3 years ago
5 0

Answer:0.084 m/s^2

Explanation:

Given

Total time=27 min 43.6 s=1663.6 s

total distance=10 km

Initial distance d_1=8.13 km

time taken=25 min =1500 s

initial speed v_1=\frac{8.13\times 1000}{25\times 60}=5.6 m/s

after 8.13 km mark steve started to accelerate

speed after 60 s

v_2=v_1+at

v_2=5.6+a\times 60

distance traveled in 60 sec

d_2=v_1\times 60+\frac{a60^2}{2}

d_2=336+1800 a

time taken in last part of journey

t_3=1663.6-1560=103.6 s

distance traveled in this time

d_3=v_2\times t_3

d_3=\left ( 5.6+a\times 60\right )103.6

and total distance=d_1+d_2+d_3

10000=8.13\times 1000+336+1800 a+\left ( 5.6+a\times 60\right )103.6

1870=336+1800 a+\left ( 5.6+a\times 60\right )103.6

a=0.084 m/s^2

You might be interested in
Radar uses radio waves of a wavelength of 2.4 \({\rm m}\) . The time interval for one radiation pulse is 100 times larger than t
blondinia [14]

Answer:

120 m

Explanation:

Given:

wavelength 'λ' = 2.4m

pulse width 'τ'= 100T ('T' is the time of one oscillation)

The below inequality express the range of distances to an object that radar can detect

τc/2 < x < Tc/2 ---->eq(1)

Where, τc/2 is the shortest distance

First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'

f = c/λ (c= speed of light i.e 3 x 10^{8} m/s)

f= 3 x 10^{8} / 2.4

f=1.25 x  10^{8} hz.

As, T= 1/f

time of one oscillation T= 1/1.25 x  10^{8}

T= 8 x 10^{-9} s

It was given that pulse width 'τ'= 100T

τ= 100 x 8 x 10^{-9} => 800 x 10^{-9} s

From eq(1), we can conclude that the shortest distance to an object that this radar can detect:

x_{min}= τc/2 =>  (800 x 10^{-9} x 3 x 10^{8})/2

x_{min}=120m

8 0
3 years ago
The right ventricle transports oxygenated blood to the lungs.
juin [17]

Answer: False

Explanation: The circulatory system of the body consists of the heart, blood vessels and blood. The deoxygenated blood from the body is carried to the heart.

Here, the deoxygentaed blood is converted into oxygenated by removing carbon dioxide from them and making it oxygenated.

The impure blood from the body is collected by the right ventricle and transported to the lungs for purification and then transported to the body.

5 0
3 years ago
Read 2 more answers
The graph shows the number of beans eaten by a
il63 [147K]

Answer:

You didn't show a graph

Explanation:

6 0
3 years ago
Read 2 more answers
A spring has a force constant k, and an object of mass m is suspended from it. The spring is cut in half and the same object is
kenny6666 [7]

Answer:

f2/f1 = \sqrt{2}

Explanation:

From frequency of oscillation

f = 1/2pi *\sqrt{k/m}

Initially with the suspended string, the above equation is correct for the relation, hence

f1 = 1/2pi *\sqrt{k/m}

where k is force constant and m is the mass

When the spring is cut into half, by physics, the force constant will be doubled as they are inversely proportional

f2 = 1/2pi *\sqrt{2k/m}

Employing f2/ f1, we have

f2/f1 = \sqrt{2}

3 0
3 years ago
A spinning wheel is slowed down by a brake, giving it a constant angular acceleration of ?5.20 rad/s2. during a 3.80-s time inte
ddd [48]

<span>We can answer this using the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²     -----> 1</span></span>

ω² = ω₀² + 2αθ            -----> 2

Where:

θ = final angular displacement = 70.4 rad

θ₀ = initial angular displacement = 0

ω₀ = initial angular speed

ω = final angular speed

t = time = 3.80 s

α = angular acceleration = -5.20 rad/s^2

Substituting the values into equation 1:<span>
70.4 = 0 + ω₀(3.80) + ½(-5.20)(3.80)² </span><span>

ω₀ = (70.4 + 37.544) / 3.80 </span><span>

ω₀ = 28.406 rad/s </span><span>


Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4 


ω = 8.65 rad/s 


</span>

5 0
3 years ago
Other questions:
  • What frequency is received by a stationary mouse just before being dispatched by a hawk flying at it at 24.7 m/s and emitting a
    6·1 answer
  • Melissa and David were playing on the tire swing that hangs from the big oak tree in their yard. While Melissa was sitting in th
    5·1 answer
  • Match each example to its type of energy.
    6·1 answer
  • A car starts from rest and speeds up at 2.2m/s^2 after the traffic light turns green , how far will it have gone when it os trav
    8·1 answer
  • Stephan Hawkins worked extensively with theoretical gravitational physics. He is well known for his work with black holes. He pa
    11·2 answers
  • What mechanical layer lies below the lithosphere
    13·2 answers
  • Which describes a virus?
    10·1 answer
  • ***PLEASE HELP WITH ANSWER AND EXPLANATION: Imagine the current in a current-carrying wire is flowing into the screen. What is t
    13·2 answers
  • Leslie incorrectly balances an equation as 2C4H10 + 12O2 → 8CO2 + 10H2O.
    5·1 answer
  • Which could most likely describe the three surfaces?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!