Given:
initial angular speed,
= 21.5 rad/s
final angular speed,
= 28.0 rad/s
time, t = 3.50 s
Solution:
Angular acceleration can be defined as the time rate of change of angular velocity and is given by:

Now, putting the given values in the above formula:


Therefore, angular acceleration is:

Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.
Answer:
<em>The first choice (32m/s) is the closest to the answer</em>
Explanation:
The magnitude of a vector is the distance between the initial and the end point of the vector.
Being Vx and Vy the horizontal and vertical components of the vector V respectively, the magnitude of V is calculated as:

The components of the velocity of the physics student's projectile launcher are Vx=28 m/s and Vy=15 m/s.
Calculate the magnitude of the velocity:




The first choice (32m/s) is the closest to the answer