1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lina20 [59]
2 years ago
14

Mr Jones launches an arrow horizontally at a rate of 40m/s off of a 78.4 m cliff towards the south, what direction and value is

his acceleration air resistance is negligible.
A. 9.8 m/s/s west
b. 9.8m/s/s east
C. 9.8m/s's down
d 9.8m/s/s south​
Physics
1 answer:
lina2011 [118]2 years ago
4 0

Answer:

9.8m/s^2 down  (option C)

Explanation:

The only acceleration acting on this motion case in the acceleration due to gravity: 9.8 m/s^2 in the downwards direction.

You might be interested in
A 3.35 kg object initially moving in the positive x direction with a velocity of 4.90 m s collides with and sticks to a 1.88 kg
ahrayia [7]

Answer:

The final components of velocity of the composite object is 3.33 m/s.

Explanation:

Given;

mass of the first object, m₁ = 3.35 kg

initial velocity of the first object, u₁ = 4.90 m/s in positive x-direction

mass of the second object, m₂ = 1.88 kg

initial velocity of the second object, u₂ = 3.12 m/s in negative y-direction

initial momentum of the first object, P₁ = 3.35 x 4.9 = 16.415 kgm/s

initial momentum of the second object, P₂ = 1.88 x 3.12 = 5.8656 kgm/s

The resultant velocity of the two objects is given by;

R² = 16.415² + 5.8656²

R² = 303.858

R = √303.858

R = 17.432 kgm/s

Apply the principle of conservation of linear momentum for inelastic collision;

total initial momentum before = total final momentum after collision

P₁(x) + P₂(y) = Pf

R = Pf

R = v(m₁ + m₂)

17.432 = v(m₁ + m₂)

where;

v is the final components of velocity of the composite object

v = \frac{17.432}{m_1 + m_2} \\\\v = \frac{17.432}{3.35+1.88} \\\\v = 3.33 \ m/s

Therefore, the final components of velocity of the composite object is 3.33 m/s.

8 0
2 years ago
Convert <img src="https://tex.z-dn.net/?f=%5Cfrac%7B%280.779mg%29%28min%29%7D%7BL%7D" id="TexFormula1" title="\frac{(0.779mg)(mi
Orlov [11]

The number converted is 0.0467 \frac{(kg)(s)}{m^3}

Explanation:

In order to convert from the original units to the final units, we have to keep in mind the following conversion factors:

1 kg = 1000 g = 10^6 mg

1 min = 60 s

1 m^3 = 1000 L

The original unit that we have is

\frac{mg\cdot min}{L}

Therefore, it can be rewritten as:

=\frac{mg \frac{1}{10^6 mg/kg}\cdot min\cdot  60 s/min}{L\frac{1}{1000L/m^3}}=0.06 \frac{(kg)(s)}{m^3}

Therefore, since the initial number was 0.779, the final value is

0.779\cdot 0.06 \frac{(kg)(s)}{m^3}=0.0467 \frac{(kg)(s)}{m^3}

#LearnwithBrainly

5 0
3 years ago
A diffraction grating is illuminated simultaneously with red light of wavelength 670 nm and light of an unknown wavelength. The
marusya05 [52]

Answer:

dsin∅ = m× λ

so, dsin∅red = 3(670nm)

also, dsin∅? =5λ?

however ,if they overlap then dsin∅red = dsin∅?

3(670nm) /5 =402nm

∴λ = 402nm

Explanation:

4 0
3 years ago
A uniform disk, a uniform hoop, and a uniform solid sphere are released at the same time at the top of an inclined ramp. They al
pav-90 [236]

Answer:

sphere, disk, hoop

Explanation:

See attached file

8 0
3 years ago
I need help it is due today
siniylev [52]

Answer:

Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.

Explanation:

To know the the correct answer to the question, it is important that we know the definition of acceleration.

Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:

a = (v – u) /t

Where

a => acceleration

v => final velocity

u => Initial velocity

t => time

With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.

For Option 1,

We were told that the tennis ball has the following:

Distance = 4 m

Time = 1.5 s

This talks about the speed and not the acceleration.

Speed = distance / time

For Option 2,

We were only told about the average speed and nothing else.

For Option 3,

We were told that the tennis ball have the following:

Initial velocity (u) = 0 m/s

Final velocity (v) = 14.7 m/s

Time = 1.5 s

This talks about the acceleration.

a = (v – u) /t

For Option 4,

We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.

From the above illustrations, option 3 gives the correct answer to the question.

8 0
3 years ago
Other questions:
  • The spring of a spring gun has force constant k = 400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with
    11·1 answer
  • You have just landed on planet x. you take out a 250-g ball, release it from rest from a height of 12.0 m, and measure that it t
    13·2 answers
  • A boy flies a kite with the string at a 30 degree angle to the horizontal. The tension in the string is 4.5N .
    7·1 answer
  • _____ are composed of ionized gas trapped in a magnetic arch rising above the surface of the Sun. When seen along the edge of th
    15·1 answer
  • Newton’s first law of motion was a giant leap forward in scientific thought during Newton’s time. Even today, the idea is someti
    14·2 answers
  • What force stops a car from sinking into the road surface?
    5·2 answers
  • The inner transition metals include the
    5·1 answer
  • 0.40N
    13·2 answers
  • Help me please please?
    6·2 answers
  • If the ball rolls out of bounds on the sideline in soccer, what is the result?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!