1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gemiola [76]
2 years ago
12

Two resistors with values of 6.0 and 12 are connected in parallel. This combination is connected in series with a 6.0 resistor.

What is the equivalent resistance of this combination?
Physics
1 answer:
Aleks [24]2 years ago
3 0

Answer:

10 ohms... are you clear with it

You might be interested in
An explosive projectile is launched straight upward to a maximum height h. At its peak, it explodes, scattering particles in all
Varvara68 [4.7K]

Answer:

θ = tan⁻¹ (\frac{19.6 \ h}{v})

Explanation:

This problem must be solved using projectile launch ratios. Let's analyze the situation, the projectile explodes at the highest point, therefore we fear the height (i = h), the speed at this point is the same, but the direction changes, we are asked to find the smallest angle of the speed in the point of arrival with respect to the x-axis.

The speed at the arrival point (y = 0)

           v² = vₓ² + v_y²

Let's see how this angle changes, for two extreme values:

* The particle that falls from the point of explosion, in this case the speed is vertical

         v = v_y

the angle with the horizontal is 90º

* The particle leaves horizontally from the point of the explosion, the initial velocity is horizontal

         vₓ = v

the final velocity for y = 0

         v_f = vₓ² + v_y²

therefore the angle has a value greater than zero and less than 90º

As they ask for the smallest angle, we can see that we must solve the last case

the output velocity is horizontal vₓ = v

Let's find the velocity when it hits the ground y = 0, with y₀ = h

            v_{y}^2 = v_{oy}^2 - 2 g (y-y₀)

            v_{y}^2 = - 2g (0- y₀)

let's calculate

           v_{y}^2 = 2 9.8 h

         

we use trigonometry to find the angle

        tan θ = \frac{v_y}{v_x}

        θ = tan⁻¹ (\frac{v_y}{v_x})

let's calculate

         θ = tan⁻¹ (\frac{19.6 \ h}{v})

3 0
2 years ago
Particle A of charge 2.76 10-4 C is at the origin, particle B of charge -6.54 10-4 C is at (4.00 m, 0), and particle C of charge
Vanyuwa [196]

Answer:

a) F_net = 30.47 N ,   θ = 10.6º

b)  Fₓ = 29.95 N

Explanation:

For this exercise we use coulomb's law

          F₁₂ = k k \frac{ q_{1}  \  q_{2} }{ r^{2} }

the direction of the force is on the line between the two charges and the sense is repulsive if the charges are equal and attractive if the charges are different.

As we have several charges, the easiest way to solve the problem is to add the components of the force in each axis, see attached for a diagram of the forces

X axis

        Fₓ = F_{bc x}

Y axis  

       F_{y}Fy = F_{ab} - F_{bc y}

let's find the magnitude of each force

     F_{ab} = 9 10⁹ 2.76 10⁻⁴ 1.02 10⁻⁴ / 3²

      F_{ab} = 2.82 10¹ N

      F_{ab} = 28.2 N

   

      F_{bc} = 9 10⁹ 6.54 10⁻⁴ 1.02 10⁻⁴ / 4²

      F_{bc} = 3.75 10¹  N

       F_{bc} = 37.5 N

let's use trigonometry to decompose this force

      tan θ = y / x

      θ = tan⁻¹ and x

       θ= tan⁻¹ ¾

      θ = 37º

let's break down the force

      sin 37 = F_{bcy} / F_{bc}

      F_{bcy} = F_{bc} sin 37

      F_{bcy} = 37.5 sin 37

      F_{bcy} = 22.57 N

      cos 37 = F_{bcx} /F_{bc}

      F_{bcx} = F_{bc} cos 37

      F_{bcx} = 37.5 cos 37

      F_{bcx} = 29.95 N

let's do the sum to find the net force

X axis

        Fₓ = 29.95 N

Axis y

        Fy = 28.2 -22.57

        Fy = 5.63 N

we can give the result in two ways

a)  F_net = Fₓ i ^ + F_{y} j ^

    F_net = 29.95 i ^ + 5.63 j ^

b) in the form of module and angle

let's use the Pythagorean theorem

    F_net = \sqrt{ F_{x}^2 + F_{y}^2 }

    F_net = √(29.95² + 5.63²)

     F_net = 30.47 N

we use trigonometry for the direction

      tan θ= \frac{ F_{y}  }{  F_{x} }

       

      θ = tan⁻¹ \frac{ F_{y}  }{  F_{x} }

      θ = tan⁻¹ (5.63 / 29.95)

      θ = 10.6º

3 0
3 years ago
A student compresses the spring in a pop up toy .020 meter if the sprinf has a spring constant of 340 newtons per meter how much
vodomira [7]
The answer is letter c-0.068 j
5 0
2 years ago
Albert uses as his unit of length (for walking to visit his neighbors or plowing his fields) the albert (a), the distance albert
True [87]

To solve this problem, we know that:

1 Albert = 88 meters

1 A = 88 m

The first thing we have to do is to square both sides of the equation:

(1 A)^2 = (88 m)^2

1 A^2 = 7,744 m^2

<span>Since it is given that 1 acre = 4,050 m^2, so to reach that value, 1st let us divide both sides by 7,744:</span>

1 A^2 / 7,744 = 7,744 m^2 / 7,744

(1 / 7,744) A^2 = 1 m^2

Then we multiply both sides by 4,050.

(4050 / 7744) A^2 = 4050 m^2

0.523 A^2 = 4050 m^2

<span>Therefore 1 acre is equivalent to about 0.52 square alberts.</span>

7 0
3 years ago
What is the difference between a wedge and a screw?
Anvisha [2.4K]
<span>A wedge is a double sided screw basically. Therefore, the difference is the number of sides.</span>
7 0
3 years ago
Other questions:
  • What happens during evaporation? A liquid changes to a gas. A liquid changes to a solid. A gas changes to a liquid. A solid chan
    14·2 answers
  • In which direction does earth's magnetic field move?
    15·1 answer
  • a 645 N person is wearing stiletto shoes. If she lifts her left leg, and rocks back onto the heel under her right leg, the press
    14·1 answer
  • Green light shines through a 100-mm-diameter hole and is observed on a screen. If the hole diameter is increased by 20%, does th
    10·1 answer
  • A 5.00-g bullet leaves the muzzle of a rifle with a speed of 320 m/s. the expanding gases behind it exert what force on the bull
    13·1 answer
  • The Sun’s surface temperature is about 5800 K and its spectrum peaks at 5000 Å. An O-type star’s surface temperature may be 40,0
    10·1 answer
  • Match the terms to their descriptions.
    9·1 answer
  • Three collisions are elastic and three are inelastic. Determine which collision type took place for each collision. Support your
    6·1 answer
  • An object is in free fall. After 10 seconds calculate the distance fallen? *
    14·2 answers
  • Reasons why inductors opposes charges passing through it<br>​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!