Yes sirrr but at least you know now
V = t^2 - 9t + 18
position, s
s = t^3 /3 - 4.5t^2 +18t + C
t = 0, s = 1 => 1=C => s = t^3/3 -4.5t^2 + 18t + 1
Average velocity: distance / time
distance: t = 8 => s = 8^3 / 3 - 4.5 (8)^2 + 18(8) + 1 = 27.67 m
Average velocity = 27.67 / 8 = 3.46 m/s
t = 5 s
v = t^2 - 9t + 18 = 5^2 - 9(5) + 18 = -2 m/s
speed = |-2| m/s = 2 m/s
Moving right
V > 0 => t^2 - 9t + 18 > 0
(t - 6)(t - 3) > 0
=> t > 6 and t > 3 => t > 6 s => Interval (6,8)
=> t < 6 and t <3 => t <3 s => interval (0,3)
Going faster and slowing dowm
acceleration, a = v' = 2t - 9
a > 0 => 2t - 9 > 0 => 2t > 9 => t > 4.5 s
Then, going faster in the interval (4.5 , 8) and slowing down in (0, 4.5)
The capacitor is used to store electric charge.That is what makes capacitors special. <span>
The charge that flows into the capacitor is stored on the plate of the capacitor that the source voltage is connected to. </span>When current flows into a capacitor, the charges get “stuck” on the plates because they can’t get past the insulating dielectric. One plate is positively charged and the other negatively <span>The stationary charges on these plates create an </span>electric field. <span>When charges group together on a capacitor like this, the cap is storing electric energy just as a battery might store chemical energy.</span>
Speed of any freely falling object is always same. Provided, both are left to fall from the same height. If you perform this experiment in a perfect vacuum or near vacuum laboratory, both of them will reach ground with same velocity this is because there is no resistance to their motion. This is always true no matter where you go and perform this experiment.
It can be easily proved from conservation of mechanical energy. Why conserving energy? because there are no forces acting on the freely falling objects other than conservative force(mg).