Answer:
The shearing stress is 10208.3333 Pa
The shearing strain is 0.25
The shear modulus is 40833.3332 Pa
Explanation:
Given:
Block of gelatin of 120 mm x 120 mm by 40 mm
F = force = 49 N
Displacement = 10 mm
Questions: Find the shear modulus, Sm = ?, shearing stress, Ss = ?, shearing strain, SS = ?
The shearing stress is defined as the force applied to the block over the projected area, first, it is necessary to calculate the area:
A = 40*120 = 4800 mm² = 0.0048 m²
The shearing stress:

The shearing strain is defined as the tangent of the displacement that the block over its length:

Finally, the shear modulus is the division of the shearing stress over the shearing strain:

The force that holds the gases in the sun. The force that causes a ball you throw in the air to come down again
Answer:
measured in GHz?
Explanation:
im not sure what the context is it depends on what your lesson is on
Answer:
0.358Kg
Explanation:
The potential energy in the spring at full compression = the initial kinetic energy of the bullet/block system
0.5Ke^2 = 0.5Mv^2
0.5(205)(0.35)^2 = 12.56 J = 0.5(M + 0.0115)v^2
Using conservation of momentum between the bullet and the block
0.0115(265) = (M + 0.0115)v
3.0475 = (M + 0.0115)v
v = 3.0475/(M + 0.0115)
plugging into Energy equation
12.56 = 0.5(M + 0.0115)(3.0475)^2/(M + 0.0115)^2
12.56 = 0.5 × 3.0475^2 / ( M + 0.0115 )
12.56 = 0.5 × 9.2872/ M + 0.0115
12.56 = 4.6436/ M + 0.0115
12.56 ( M + 0.0115 ) = 4.6436
12.56M + 0.1444 = 4.6436
12.56M = 4.6436 - 0.1444
12.56 M = 4.4992
M = 4.4992÷12.56
M = 0.358 Kg
Answer: An atom that gains or loses an electron becomes an ion. If it gains a negative electron, it becomes a negative ion. If it loses an electron it becomes a positive ion