This is false. An alcohol does indeed have a polar C-O single bond, but what we should really be focusing on is the extraordinarily polar O-H single bond. When oxygen, fluorine, or nitrogen is bound to a hydrogen atom, there is a small (but not negligible) charge separation, where the eletronegative N, O, or F has a partial negative charge, and the H has a partial positive charge. Water has two O-H single bonds in it (structure is H-O-H). The partially negative charge on the O of the water molecule (specifically around the lone pair) can become attracted either a neighboring water molecule's partially positive H atom, or an alcohol's partially positive H atom. This is weak (and partially covalent) attraction is called a hydrogen bond. This is stronger than a typical dipole-dipole attraction (as would be seen between neighboring C-O single bonds), and much stronger than dispersion forces (between any two atoms). When the solvent (water) and the solute (the alcohol) both exhibit similar intermolecular forces (hydrogen bonding being the most important in this case), they can mix completely in all proportions (i.e. they are miscible) in water.
C. mass is protons and neutrons. Both are in the nucleus
Friction of the air, and the surface it is on
Answer:
3 will be the correct coefficient of CaBr2
Explanation:
In balancing a chemical equation, numbers should be assigned to both reactants and products as a numerical coefficients until all atoms of elements in both sides of the equation count equal.
The balanced equation of the reaction will be:
3CaSO4 + 2AlBr3 ==> 3CaBr2 + Al2(SO4)3
Looking at the unbalanced equation in the question, in the product Al2(SO4)3 there are 3 SO4 group. This will warrant putting 3 behind CaSO4 in order to balance the atoms of SO4 group. That operation will automatically put the number of Ca atoms in CaSO4 to be 3 therefore making CaBr2 to have 3 coefficient as in the balanced equation. This is to balance the number of Ca atoms in both sides to be 3.