Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
Yes, o-toluic acid is soluble in ether as ether is slightly polar and it is soluble in NaOH because it is likely to form soluble compounds with it.
Naphthalene is insoluble in NaOH.
Answer:
It's A., thats conduction and its a heat transfer
Explanation:
(a) We know that work is the product of Force and Distance so: (in this
case Distance is negative since going down so –d)
work = force * distance
work = M * (g - g/4) * -d
work = -3Mgd/4 <span>
(b) The work by the weight of the block is simply:</span>
work = Mgd <span>
(c) The kinetic energy is simply equivalent to the
net work, therefore:</span>
KE = net work
KE = Mgd/4 <span>
(d) The velocity is:</span>
v = √(2*KE/M)
Plugging in the value of KE from c:
v = √(2*Mgd / 4M)
<span>v = √(gd / 2) </span>