Answer:
a.) 1567.2 m/s
b.) 149.4 m/s
Explanation:
Given that a 26 kg body is moving through space in the positive direction of an x axis with a speed of 350 m/s when, due to an internal explosion, it breaks into three parts. One part, with a mass of 7.8 kg, moves away from the point of explosion with a speed of 180 m/s in the positive y direction. A second part, with a mass of 8.8 kg, moves in the negative x direction with a speed of 640 m/s.
The x-component of the third part can be calculated by assuming that it moves in a positive x axis.
The third mass = 26 - ( 7.8 + 8.8)
The third mass = 26 - 16.6
The third mass = 9.4kg
since momentum is conserved, the momentum before explosion will be equal to sum of the momentum after explosion
26 x 350 = -8.8 x 640 + 9.4V
9100 = -5632 + 9.4V
9.4V = 9100 + 5632
9.4V = 14732
V = 14732/9.4
V = 1567.2 m/s
(b) y-component of the velocity of the third part will be
7.8 x 180 = 9.4 V
1404 = 9.4V
V = 1404/9.4
V = 149.4 m/s
Answer:
option b is correct..................
Melting freezing and boiling are molecular changes
3. The nuclear potential that binds protons and neutrons in the nucleus of an atom
is often approximated by a square well. Imagine a proton confined in an infinite
square well of length 10−5 nm, a typical nuclear diameter. Calculate the wavelength
and energy associated with the photon that is emitted when the proton undergoes a
transition from the first excited state (n = 2) to the ground state (n = 1). In what
region of the electromagnetic spectrum does this wavelength belong?
Answer 3
We are given that,
Length of square well = L = 10−5
nm = 10−14 m.
Energy of proton in state n is given by,
En =
π
2n
2~
2
2mpL2
,
where L is the width of the square well.
⇒ E1 =
π
2~
2
2mpL2
E2 =
4π
2~
2
2mpL2
·